Dartmouth-led study finds removal of dams in New England can help reconnect river networks and increase watershed resilience

June 07, 2016

HANOVER, N.H. - June 7, 2016 - Dam removal in New England is not only an important aspect of river restoration but it also provides an opportunity to enhance the magnitude and rate of river re-connection, and improve watershed resilience in response to human impact on the environment, if a broader strategic removal approach is implemented throughout the region, according to a new Dartmouth-led study published in Elementa: Science of the Anthropocene.

The study is the first interdisciplinary, region-wide assessment of the social and biophysical impacts of dam removal and was conducted by researchers at Dartmouth, American Rivers and the USDA Forest Service.

"These results not only reveal what has been achieved so far for river management in New England but they also indicate what can possibly be attained to restore broader ecological functioning in regional aquatic ecosystems," says lead author Francis J. Magilligan, a professor of geography at Dartmouth. "New England remains a dammed landscape but the approaches developed in this research can help further guide river restoration efforts regionally."

Over 14,000 dams dot the New England landscape due to the region's early European settlement and history of water-powered based industry production. Yet, with aging infrastructure, risks and costs associated with safety and maintenance, and environmental concerns, there has been an increasing trend for the removal of dams throughout New England as part of local river restoration efforts and conservation strategies.

To examine the impact of the removal of dams in New England, researchers created a geographic information system (GIS) database to compare the number of existing dams irrespective of size or volume with ones that were removed over the past nearly 25 years. The study found that the region has over 14,000 dams, which well surpassed the U.S. Army Corps of Engineer's National Inventory of Dams (NID) total of 4,000 dams. The latter did not reflect many of the region's small mill dams, which did not meet the height and reservoir volume requirements for the NID's dataset. With nearly eight dams per 100 km² in New England, most of the dams in the region are located in Conn., Maine, Mass., and New Hampshire, with very few in Rhode Island and Vermont. The dams often obstruct other types of watershed areas that contain orphaned mill dams, small headwater supply dams and larger hydropower facilities.

Between 1990 and 2013, 127 dams or approximately 12 per year were removed in New England, which accounts for nearly one-fifth of the more than 60 dams removed nationally. Most of the dams removed in New England or 78 percent in total are located in eco-regions that are far inland (40 percent in the Northeastern Coastal Zone and 38 percent in the Northern Highlands); therefore, many of the river areas where dam removal has occurred remain disconnected from the ocean even after the removal process due to the existence of dams downstream.

If closely spaced dams however, are removed, more free flowing river length in a specific area will open up, which can allow for continuous fish passage and the enhancement of sediment connectivity that can in turn facilitate the development of fluvial habitats (bars, banks and floodplains) located downstream.

New England has approximately 104,000 km of total river length and as a result of dam removals, 3,770 km or 3.61 percent of the regional river network has been reclaimed with the majority of dam removals in Maine.

While the removal of dams can re-establish free flowing river areas, the specific location of where a dam is removed is key. If other dams are still located up or downstream, diadromous fish (i.e. fish that spend their time in salt and freshwater such as Atlantic salmon) will not be able to access the newly restored habitat. As temperatures rise and global warming continues, predictions have indicated that salmon, trout and other native coldwater-dependent species may seek coldwater refuge upstream due to downstream warming, providing a benefit of dam removal in upper catchments. Dam removal in the upper catchments of New England's rivers provides an opportunity to capitalize on the restoration of forest cover to pre-settlement levels and water quality improvements that the region has experience over the last century, as the removal of dams may also provide access to high quality and resilient habitats.

With the use of new geospatial databases and associated spatial algorithms, stakeholders can identify which dams may liberate the most free-flowing river and prioritize the areas for watershed or river restoration. In New England, watershed restoration and watershed resilience in response to regional and global anthropogenic changes is much more likely to be achieved, if dams are removed strategically on a large scale within the region.
-end-
Francis J. Magilligan is available for comment at: francis.j.magilligan@dartmouth.edu.

The study was co-authored by: Brian Graber, senior director of river restoration at American Rivers in Northamption, Mass.; Keith H. Nislow, research fisheries biologist at the USDA Forest Service's Northern Research Station in Amherst, Mass.; Jonathan W. Chipman, director of the Citrin Family GIS/Applied Spatial Analysis Laboratory at Dartmouth College; Christopher S. Sneddon, professor of geography and environmental studies at Dartmouth; and Coleen A. Fox, senior lecturer at Dartmouth.

The study is part of a broader project, funded by the National Science Foundation, to examine the biophysical and social dimensions of dam removal in New England led by Dartmouth geographers Christopher S. Sneddon, Francis J. Magilligan and Coleen Fox.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Dartmouth College

Related Watershed Articles from Brightsurf:

SwRI researchers evaluate impact of wastewater systems on Edwards Aquifer
Southwest Research Institute developed an integrated hydrologic computer model to evaluate the impact of different types of wastewater disposal facilities on the Edwards Aquifer, the primary water source for San Antonio and its surrounding communities.

New climate model helps researchers better predict water needs
New research from the FAMU-FSU College of Engineering combines climate and land use projections to predict water availability, information that is crucial for the preparations of resource managers and land-use planners.

A watershed moment for US water quality
A new federal rule that determines how the Clean Water Act is implemented leaves millions of miles of streams and acres of wetlands unprotected based on selective interpretation of case law and a distortion of scientific evidence, researchers say in a new publication.

Response to fire impacts water levels 40 years into future
Salvage logging and re-seeding a forest after a wildfire helps reduce flooding and returns water levels to normal faster, according to a new paper from a Washington State University researcher.

Choosing most cost-effective practices for sites could save in bay cleanup
Using site-specific watershed data to determine the most cost-effective agricultural best management practices -- rather than requiring all the recommended practices be implemented across the entire watershed -- could make staying below the Chesapeake Bay's acceptable pollution load considerably less expensive.

Reassessing strategies to reduce phosphorus levels in the Detroit river watershed
In an effort to control the cyanobacteria blooms and dead zones that plague Lake Erie each summer, fueled by excess nutrients, the United States and Canada in 2016 called for a 40% reduction in the amount of phosphorus entering the lake's western and central basins, including the Detroit River's contribution.

Plants use more water in soils leached by acid rain, West Virginia forest study shows
In one of the first long-term studies to explore how changing soils have impacted plant water uptake, researchers report that plants in soil leached by polluted rain drink more water.

UMD studies green infrastructure to manage more intense stormwater with climate change
UMD researchers are connecting climate change to stormwater management, with the goal of increasing resiliency to major storm events.

Economic analysis provides watershed moment for environmental groups
Economists have found that in the United States, watershed groups have had a positive impact on their local water quality.

Few hatchery brook trout genes present in Pennsylvania watershed wild fish
Despite many decades of annual brook trout stocking in one northcentral Pennsylvania watershed, the wild brook trout populations show few genes from hatchery fish, according to researchers who genotyped about 2,000 brook trout in Loyalsock Creek watershed, a 500-square-mile drainage in Lycoming and Sullivan counties celebrated by anglers for its trout fishing.

Read More: Watershed News and Watershed Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.