Swapping sick for healthy brain cells slows Huntington's disease

June 07, 2016

Researchers have successfully reduced the symptoms and slowed the progression of Huntington's disease in mice using healthy human brain cells. The findings, which were published today in the journal Nature Communications, could ultimately point to a new method to treat the disease.

The research entailed implanting the animals with human glia cells derived from stem cells. One of the roles of glia, an important support cell found in the brain, is to tend to the health of neurons and the study's findings show that replacing sick mouse glia with healthy human cells blunted the progress of the disease and rescued nerve cells at risk of death.

"The role that glia cells play in the progression of Huntington's disease has never really been explored," said Steve Goldman, M.D., Ph.D., co-director of the University of Rochester Center for Translational Neuromedicine. "This study shows that these cells are not only important actors in the disease, but may also hold the key to new treatment strategies."

Huntington's is a hereditary neurodegenerative disease that is most closely characterized by the loss of a specific nerve cell in the brain that plays a critical role in motor control called the medium spiny neurons. Over time, the disease results in involuntary movements, problems with coordination, and cognitive decline and depression. There is currently no way to slow or modify this fatal disease.

Most of the damage in Huntington's disease occurs in a region of the brain called the striatum. Researchers have observed that as medium spiny neurons in the striatum die as a result of the disease, and that neighboring glial cells called astrocytes also become sick and do not function properly. However, it had not been clear if the sick astrocytes contributed to the signs and symptoms of the disease.

The researchers conducted a series of experiments in which they isolated human glial progenitors - the cells in the central nervous system that give rise to astrocytes - from both embryonic stem cells and brain tissue and implanted the cells into the striatum of mice with Huntington's disease. Consistent with prior studies, they observed that the resulting human astrocytes outcompeted the native glia cells, resulting in mice with native neurons but human glia.

The researchers discovered that human glia transplanted into mice with the Huntington's disease mutation appeared to keep neurons healthier and extended the animals survival. They also conducted a battery of tests designed to measure the animals' behavior, memory, and motor skills, and the mice with healthy human glia performed significantly better than untreated mice with Huntington's disease.

Conversely, when healthy mice were implanted with human glia carrying the genetic mutation that causes Huntington's, the animals exhibited symptoms of the disease.

The researchers believe that the healthy human glia were able to essentially stabilize and perhaps even rescue neurons by restoring the normal signaling function that is lost during the disease. A complex series of chemical interactions must transpire when nerve cells fire and communicate with their neighbors. This activity requires neurons to constantly adjust and rebalance concentrations of important chemicals such as potassium, which participates in neuronal firing. Medium spiny neurons become overexcited in Huntington's disease due to a genetic flaw that prevents potassium from entering the cells in sufficient amount - a condition that gives rise to the motor control and cognitive symptoms of the disease and produces a toxic chain reaction that ultimately kills the nerve cells.

One of the roles of astrocytes is to function like a sponge and absorb potassium from the space surrounding neurons and create an environment that prevents neurons from becoming overactive. However, this function is impaired in glia in Huntington's disease. The scientists found that the transplanted healthy glia were able to reestablish normal potassium uptake and thereby restore normal neuronal activity and rescue cells that might have otherwise died from hyper-excitability.

Because glia cells have been shown to migrate and proliferate throughout the brain once implanted, these findings could herald a potential new approach to rescue nerve cells threatened by the disease.

"The partial rescue of deficiencies we observed in this study tells us that there is a significant glia component in Huntington's disease and that we may be able to improve function and delay progression with glial transplants," said Goldman.
Additional co-authors of the study include Abdellatif Benraiss, Su Wang, Stephanie Herrlinger, Xialjie Li, Devin Chandler-Militello, Joseph Mauceri, Hayley Burm, Michael Toner, Qiwu Xu, Fengfei Ding, Fushun Wang, Ning Kang, Martha Windrem, and Maiken Nedergaard with the University of Rochester, Mikhail Osipovitch with the University of Copenhagen, Jian Kang with the New York Medical College, and Paul Curtin and Daniela Brunner with Psychogenetics, Inc. Goldman and Nedergaard maintain labs at both the University of Rochester and the University of Copenhagen. The study was support with funds from the CHDI Foundation, the National Institutes of Health, the Leila Y. and G. Harold Mathers Charitable Foundation, the New York State Stem Cell Research Program, and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

University of Rochester Medical Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.