Nav: Home

'Immunoswitch' particles may be key to more-effective cancer immunotherapy

June 07, 2017

Scientists at Johns Hopkins have created a nanoparticle that carries two different antibodies capable of simultaneously switching off cancer cells' defensive properties while switching on a robust anticancer immune response in mice. Experiments with the tiny, double-duty "immunoswitch" found it able to dramatically slow the growth of mouse melanoma and colon cancer and even eradicate tumors in test animals, the researchers report.

The findings, described online June 7 in ACS Nano, could lead to ways to boost the effectiveness and promise of immunotherapies in people with cancer, the investigators say.

"Immunotherapies have significant potential and yet room for improvement," says Jonathan P. Schneck, M.D., Ph.D., professor of pathology in the Johns Hopkins University School of Medicine's Institute for Cell Engineering and a member of the Johns Hopkins Kimmel Cancer Center. "The improvement here was to make, for the first time, a nanoparticle that can interact simultaneously with multiple types of cells in the complex tumor microenvironment, dramatically increasing its effectiveness."

Schneck and study co-leader Alyssa K. Kosmides, a graduate student in his laboratory, explain that several cancer treatments designed to stimulate a patient's immune system to fight the disease have been approved by the U.S. Food and Drug Administration, including three known as checkpoint inhibitors. Those drugs help overcome cancer cells' ability to evade a person's immune system by using antibodies to shut down proteins on tumor cell surfaces that hide them from immune cells.

However, they point out, checkpoint inhibitors work only in a relatively limited number of patients and against a small number of cancers so far. Follow-up studies show that overall response rates against melanoma, bladder cancer, Hodgkin's lymphoma and non-small cell lung cancer is around 30 percent, and complete response rates, resulting in eradication of a patient's tumors, are as low as 5 percent.

But combining multiple forms of immunotherapy in doses high enough to be effective can cause severe, even life-threatening, side effects.

For their study, the Johns Hopkins researchers combined two different immunotherapy strategies on manmade nanoparticles about 1,000 times smaller in diameter than a human hair, similar to drug-delivery platforms already in use in some cancer therapies, including chemotherapies such as Doxil, Abraxane and Myocet.

Nanoparticles have clear advantages over free drug, Kosmides explains, such as their "enhanced permeability and retention effect," which causes nanosized particles to be taken up more readily by tumor cells than by healthy cells. Additionally, each particle can hold dozens of antibodies at once, which dramatically raises the local concentration of antibodies. This makes them more effective and reduces the chances of side effects, she says.

"Nanoparticles provide more bang for your buck," Schneck says.

Using paramagnetic iron particles about 100 nanometers in diameter, the researchers placed two different kinds of antibodies on them: one blocks a protein called programmed death ligand 1 (PD-L1), which cancer cells use to cloak themselves from immune cells; another that stimulates T cells, a type of immune cell that fights cancer. By combining these two functions, Schneck explains, the goal was to effectively switch off a tumor's immune-inhibiting ability while simultaneously switching on the immune system's capacity to attack.

In mice injected with mouse melanoma cells, which grew into tumors over the course of several days, only mice who subsequently received the "immunoswitch" particles had significantly delayed tumor growth and longer survival compared to those who received the control treatments or no treatment.

Specifically, the immunoswitch-treated mice had tumors nearly 75 percent smaller than animals that received no treatment, whereas soluble antibody only reduced tumor growth by approximately 25 percent. Half of immunoswitch-treated mice were still alive after 30 days, whereas all untreated mice died by day 22.

"The double-duty immunoswitch particles were clearly more effective than a mixture of nanoparticles that each targeted just one protein and acted in a synergistic fashion, but we don't yet know why," says Schneck. "It may be that the immunoswitch particles' success comes from bringing T cells and their targeted tumor cells into close proximity."

The researchers say they found even more dramatic results in a mouse model of colon cancer. In those experiments, about half the mice had a complete regression of tumors and about 70% could be considered long-term survivors, living more than 55 days.

Looking for the mechanism behind the immunoswitch particles' positive effects, further experiments showed that the particles appear to bring cancer cells and the immune cells that fight them together more easily, providing a synergy that's not possible even with the same two antibodies on separate particles. The immunoswitch particles also were retained in tumor cells significantly longer than soluble antibodies, offering more time for them to work, Schneck and Kosmides say.

The researchers add that they plan to work on improving the immunoswitch particles by searching for more effective combinations of antibodies to include on the platform. Because the particles are magnetic, they also plan to test whether results can be improved by using magnets to guide the particles and keep them at the tumor site.
-end-
Other Johns Hopkins researchers who participated in this study include John-William Sidhom, Andrew Frasier and Catherine A. Bessell.

The study was funded by the National Science Foundation (grant number DGE-1232825), the National Institutes of Health Cancer Nanotechnology Training Center at the JHU Institute for Nanobiotechnology (grant number 2T32CA153952-06), the National Cancer Institute (grant numbers F31CA206344, R01-CA108835 and R21-CA185819), the National Institute of Allergy and Infectious Disease (grant number P01-AI072677), the TEDCO/Maryland Innovation Initiative and the Coulter Foundation.

Johns Hopkins Medicine

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...