Nav: Home

Recycling plant material into stock chemicals with electrochemistry

June 07, 2017

While most people think of recycling in terms of the packaging for household products, the concept can extend to the chemistry to make them in the first place. Certain plant components are a promising renewable source for commodity chemicals. Today, in ACS Central Science, researchers reveal an easy new way to break down one of the most common plant compounds, called lignin, and recycle it into useful chemicals.

Lignin is a rigid polymer that acts as a space-filler in the plant's cell wall. It is unique among bioresources in that if you break it into pieces, you get useful fragments that can be formed into pharmaceuticals, plastics and other household products. However, due to lignin's inertness, the processes needed to do this tend to be low-yielding, and they usually result in a hodgepodge of different compounds. Corey Stephenson and colleagues recognized that by applying a specific electrical potential in an oxidation reaction, they might be better able to control the result.

Using electrical potential in concert with blue light, the researchers developed a two-step process that consistently breaks lignin at one specific chemical bond. Unlike many other electrocatalytic reactions, their method does not include any metals, making it cheaper and more environmentally friendly. The authors also note their "flow" set-up is also well-suited for large-scale adoption in industry.
-end-
The authors acknowledge funding from the National Science Foundation, The Camille and Henry Dreyfus Foundation, the University of Michigan, the Ramón Areces Foundation, the Swedish Research Council and the Royal Swedish Academy of Agriculture and Forestry.

The paper will be freely available on June 7, 2017, at this link: http://pubs.acs.org/doi/full/10.1021/acscentsci.7b00140

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Lignin Articles:

Researchers develop sustainable method for extracting vanillin from wood processing waste
Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have developed a new sustainable method of extracting the flavoring agent vanillin from lignin, a component of wood.
A model for better predicting the unpredictable byproducts of genetic modification
Researchers are interested in genetically modifying trees for a variety of applications, from biofuels to paper production.
A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.
Plastic from wood
The biopolymer lignin is a by-product of papermaking and a promising raw material for manufacturing sustainable plastic materials.
KIST develops biofuel production process in cooperation with North American researchers
Biofuel is often touted as a clean fuel, but the fact that it is made using food sources is a major drawback.
How tiny enzymes reign supreme in worldwide carbon recycling
That white rot fungi on fallen logs in a forest, it's super important.
Turning wood into pharmaceutical ingredients 
Production of hazardous waste during drug manufacturing is a serious concern for the pharmaceutical industry.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
Engineering enzymes to turn plant waste into sustainable products
A new family of enzymes has been engineered to perform one of the most important steps in the conversion of plant waste into sustainable and high-value products such as nylon, plastics and chemicals.
Scientists identify a novel target for corn straw utilization
A team of scientists led by Prof. FU Chunxiang from the Qingdao Institute of Bioenergy and Bioprocess Technology completed the identification of bm5 mutant.
More Lignin News and Lignin Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.