Nav: Home

Recycling plant material into stock chemicals with electrochemistry

June 07, 2017

While most people think of recycling in terms of the packaging for household products, the concept can extend to the chemistry to make them in the first place. Certain plant components are a promising renewable source for commodity chemicals. Today, in ACS Central Science, researchers reveal an easy new way to break down one of the most common plant compounds, called lignin, and recycle it into useful chemicals.

Lignin is a rigid polymer that acts as a space-filler in the plant's cell wall. It is unique among bioresources in that if you break it into pieces, you get useful fragments that can be formed into pharmaceuticals, plastics and other household products. However, due to lignin's inertness, the processes needed to do this tend to be low-yielding, and they usually result in a hodgepodge of different compounds. Corey Stephenson and colleagues recognized that by applying a specific electrical potential in an oxidation reaction, they might be better able to control the result.

Using electrical potential in concert with blue light, the researchers developed a two-step process that consistently breaks lignin at one specific chemical bond. Unlike many other electrocatalytic reactions, their method does not include any metals, making it cheaper and more environmentally friendly. The authors also note their "flow" set-up is also well-suited for large-scale adoption in industry.
-end-
The authors acknowledge funding from the National Science Foundation, The Camille and Henry Dreyfus Foundation, the University of Michigan, the Ramón Areces Foundation, the Swedish Research Council and the Royal Swedish Academy of Agriculture and Forestry.

The paper will be freely available on June 7, 2017, at this link: http://pubs.acs.org/doi/full/10.1021/acscentsci.7b00140

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Lignin Articles:

Recycling plant material into stock chemicals with electrochemistry
While most people think of recycling in terms of the packaging for household products, the concept can extend to the chemistry to make them in the first place.
Mountains of waste could lead to new US manufacturing, jobs
Waste material from the paper and pulp industry soon could be made into anything from tennis rackets to cars.
HKU and Kyoto U reveal a new strategy to enhance the efficiency of cereal straw for biofuel production
A collaborative research effort by the University of Hong Kong and Kyoto University has revealed a new strategy to allow cellulose in rice straw to release its fermentable sugar more efficiently.
Trash into treasure: Sandia could help biofuel pay for itself with goods made from waste
A recent discovery by Sandia National Laboratories researchers may unlock the potential of biofuel waste -- and ultimately make biofuels competitive with petroleum.
Termite gut holds a secret to breaking down plant biomass
In the Microbial Sciences Building at the University of Wisconsin-Madison, the incredibly efficient eating habits of a fungus-cultivating termite are surprising even to those well acquainted with the insect's natural gift for turning wood to dust.
The protective layer of prehistoric land plants
Biologists discover a mechanism in mosses that was crucial for the evolution of ecosystems on land.
Reactive lignin for reducing the environmental impacts of wood products
VTT Technical Research Centre of Finland has developed technology known as 'CatLignin' to produce reactive lignin from pulp industry side streams to be used as a replacement for toxic phenol compounds in wood adhesives that are widely used in wood products and furniture.
New peptide hormone aids waterproof barrier formation in plant roots
Nagoya researchers identified peptides in plant roots that bind known receptors and help control formation and maintenance of a waterproof barrier ensuring ion homeostasis.
Rotting away: Getting at the evolutionary roots of wood decay
Fungi are master decayers of dead plant matter, including wood.
Turning biofuel waste into wealth in a single step
Lignin is a bulky chain of molecules found in wood and is usually discarded during biofuel production.

Related Lignin Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...