Nav: Home

High-pressure experiments solve meteorite mystery

June 07, 2017

With high-pressure experiments at DESY's X-ray light source PETRA III and other facilities, a research team around Leonid Dubrovinsky from the University of Bayreuth has solved a long standing riddle in the analysis of meteorites from Moon and Mars. The study, published in the journal Nature Communications, can explain why different versions of silica can coexist in meteorites, although they normally require vastly different conditions to form. The results also mean that previous assessments of conditions at which meteorites have been formed have to be carefully re-considered.

The scientists investigated a silicon dioxide (SiO2) mineral that is called cristobalite. „This mineral is of particular interest when studying planetary samples, such as meteorites, because this is the predominant silica mineral in extra-terrestrial materials," explains first author Ana Černok from Bayerisches Geoinstitut (BGI) at University Bayreuth, who is now based at the Open University in the UK. „Cristobalite has the same chemical composition as quartz, but the structure is significantly different," adds co-author Razvan Caracas from CNRS, ENS de Lyon.

Different from ubiquitous quartz, cristobalite is relatively rare on Earth's surface, as it only forms at very high temperatures under special conditions. But it is quite common in meteorites from Moon and Mars. Ejected by asteroid impacts from the surface of Moon or Mars, these rocks finally fell to Earth.

Surprisingly, researchers have also found the silica mineral seifertite together with cristobalite in Martian and lunar meteorites. Seifertite was first synthesised by Dubrovinsky and colleagues 20 years ago and needs extremely high pressures to form. "Finding cristobalite and seifertite in the same grain of meteorite material is enigmatic, as they form under vastly different pressures and temperatures," underlines Dubrovinsky. "Triggered by this curious observation, the behaviour of cristobalite at high-pressures has been examined by numerous experimental and theoretical studies for more than two decades, but the puzzle could not be solved."

Using the intense X-rays from PETRA III at DESY and the European Synchrotron Radiation Facility ESRF in Grenoble (France), the scientists could now get unprecedented views at the structure of cristobalite under high pressures of up to 83 giga-pascals (GPa), which corresponds to roughly 820,000 times the atmospheric pressure. "The experiments showed that when cristobalite is compressed uniformly or almost uniformly - or as we say, under hydrostatic or quasi-hydrostatic conditions - it assumes a high-pressure phase labelled cristobalite X-I," explains DESY co-author Elena Bykova who works at the Extreme Conditions Beamline P02.2 at PETRA III, where the experiments took place. "This high-pressure phase reverts back to normal cristobalite when the pressure is released."

But if cristobalite is compressed unevenly under what scientists call non-hydrostatic conditions, it unexpectedly converts into a seifertite-like structure, as the experiments have now shown. This structure forms under significantly less pressure than necessary to form seifertite from ordinary silica. "The ab initio calculations confirm the dynamical stability of the new phase up to high pressures," says Caracas. Moreover it also remains stable when the pressure is released.

"This came as a surprise," says Černok. "Our study clarifies how squeezed cristobalite can transform into seifertite at much lower pressure than expected. Therefore, meteorites that contain seifertite associated with cristobalite have not necessarily experienced massive impacts." During an impact, the propagation of the shock wave through the rock can create very complex stress patterns even with intersecting areas of hydrostatically and non-hydrostatically compressed materials, so that different versions of silica can form in the same meteorite.

"These results have immediate implications for studying impact processes in the solar system," underlines Dubrovinsky. "They provide clear evidence that neither cristobalite nor seifertite should be considered as reliable tracers of the peak shock conditions experienced by meteorites." But the observations also show more generally that the same material can react very differently to hydrostatic and non-hydrostatic compression, as Dubrovinsky explains. "For materials sciences our results suggest an additional mechanism for the manipulation of the properties of materials: Apart from pressure and temperature, different forms of stress may lead to completely different behaviour of solid matter."
Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.


Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation; Ana Černok, Katharina Marquardt, Razvan Caracas, Elena Bykova, Gerlinde Habler, Hanns-Peter Liermann, Michael Hanfland, Mohamed Mezouar, Ema Bobocioiu, and Leonid Dubrovinsky;
Nature Communications", 2017; DOI: 10.1038/ncomms15647

Deutsches Elektronen-Synchrotron DESY

Related Mars Articles:

How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
Does Mars have rings? Not right now, but maybe one day
Purdue researchers developed a model that suggests that debris that was pushed into space from an asteroid or other body slamming into Mars around 4.3 billion years ago and alternates between becoming a planetary ring and clumping up to form a moon.
Digging deeper into Mars
Scientists continue to unravel the mystery of life on Mars by investigating evidence of water in the planet's soil.
A bewildering form of dune on Mars
Researchers have discovered a type of dune on Mars intermediate in size between tiny ripples and wavier dunes, and unlike anything seen on Earth.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
Shifting sands on Mars
University of Iowa researchers have a $501,000 NASA grant to travel to Iceland to better understand sand dunes found all over the planet Mars.
Potatoes on Mars
A team of world-class CIP and NASA scientists will grow potatoes under Martian conditions in a bid to save millions of lives.
You too can learn to farm on Mars!
Scientists at Washington State University and the University of Idaho are helping students figure out how to farm on Mars, much like astronaut Mark Watney, played by Matt Damon, attempts in the critically acclaimed movie 'The Martian.'
Similarities between aurorae on Mars and Earth
An international team of researchers has for the first time predicted the occurrence of aurorae visible to the naked eye on a planet other than Earth.
Mars might have liquid water
Researchers have long known that there is water in the form of ice on Mars.

Related Mars Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...