Nav: Home

Researchers shed light on how our eyes process visual cues

June 07, 2017

The mystery of how human eyes compute the direction of moving light has been made clearer by scientists at The University of Queensland.

Using advanced electrical recording techniques, researchers from UQ's Queensland Brain Institute (QBI) discovered how nerve cells in the eye's retina were integral to the process.

Professor Stephen Williams said that dendrites - the branching processes of a neuron that conduct electrical signals toward the cell body - played a critical role in decoding images.

"The retina is not a simple camera, but actively processes visual information in a neuronal network, to compute abstractions that are relayed to the higher brain," Professor Williams said.

"Previously, dendrites of neurons were thought to be passive input areas.

"Our research has found that dendrites also have powerful processing capabilities."

Co-author Dr Simon Kalita-de Croft said dendritic processing enabled the retina to convert and refine visual cues into electrical signals.

"We now know that movement of light - say, a flying bird, or a passing car - gets converted into an electrical signal by dendritic processing in the retina," Dr Kalita-de Croft said.

"The discovery bridges the gap between our understanding of the anatomy and physiology of neuronal circuits in the retina."

Professor Williams said the ability of dendrites in the retina to process visual information depended on the release of two neurotransmitters - chemical messengers - from a single class of cell.

"These signals are integrated by the output neurons of the retina," Professor Williams said.

"Determining how the neural circuits in the retina process information can help us understand computational principles operational throughout the brain.

"Excitingly, our discovery provides a new template for how neuronal computations may be implemented in brain circuits."
-end-
The study, Dendro-dendritic cholinergic excitation controls dendritic spike initiation in retinal ganglion cells, has been published in the journal Nature Communications.

University of Queensland

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab