Nav: Home

Cope's gray treefrogs meet the cocktail party problem

June 07, 2017

You've been there: Trying to carry on a conversation in a room so noisy that the background chatter threatens to drown out the words you hear. Yet somehow your auditory system is able to home in on the message being conveyed by the person you're talking with. The secret to rising above the noise -- a dilemma known in the world of sound science as "the cocktail party problem" -- turns out to lie in its ability to discern patterns in the background noise and selectively ignore such patterns, according to a new study published in Current Biology earlier this month.

Frogs matingListening to a deafening chorus of Cope's gray treefrogs on a spring evening, scientists have wondered: Do female frogs use a similar strategy to pick important messages about potential mates out of the cacophony? The chorus consists of the calls of countless individual male frogs, each of which is conveying information about which species it is and how fit it is -- with faster, longer calls indicating fitter individuals. To ensure the best survival of their young, "the females have to be able to tell the appropriate species and be able to choose a high-quality male," says Norman Lee, a postdoctoral fellow in the Department of Ecology, Evolution, and Behavior. But how can they, when everyone is talking at the same time?

Working with associate professor Mark Bee and colleagues in EEB and the Department of Psychology, Lee has figured out what traits of the background noise of frog choruses allow females to tune out the hubbub and tune into the hubba-hubba -- with implications not only for our understanding of frog ecology and evolution, but also for our ability to help humans hear.

Lee knew from others' research that humans are able to hear certain sounds better in noisy settings when the background noise is "comodulated" -- meaning that the various frequencies of sound it comprises vary in loudness together. Could the fact that the background noise is comodulated be a key to the frogs' success? To find out, he first built a model of the Cope's gray treefrog's ear and used it to determine how this species may process the background chorus. He then analyzed frog choruses and discovered that the chorus input indeed is comodulated.

"What we [still] didn't know is if animals could exploit these features for improved decision-making," Lee says. To answer that question, he produced several artificial choruses made up of two noise bands centered on the call frequencies -- one in which the sound was unmodulated, meaning that it didn't vary in sound intensity; one in which the two noise bands were modulated but not together; and one in which the two noise bands were comodulated. He then played each of those in the background while presenting females with a Cope's gray treefrog call and a call simulating another species. Indeed, the females were most likely to choose the right species' call when the background noise was comodulated. Similarly, he presented two Cope's gray treefrog calls, with one being longer and repeated at a higher call rate (and so, presumably representing a more fit mate and therefore a better evolutionary choice). He found, again, that females made the best choices when the background chorus was comodulated.

"Previous studies of animal communication have generally regarded noise as a relatively static feature of the animal's acoustic environment," says Bee. "What this new work shows is not only that noisy acoustic scenes are, in fact, dynamic, but also that they are dynamic in predictable ways that animals have evolved to exploit to avoid noise-induced errors in communication."

Because frogs' ears are configured differently than those of other vertebrates and so may process sound differently, the findings hold importance not only for understanding what it takes for frogs to successfully procreate, but also for humans: Knowledge of the differences, the researchers say, could potentially be used to design better hearing aids and speech recognition systems.Trying to carry on a conversation in a room so noisy that the background chatter threatens to drown out the words you hear. Yet somehow your auditory system is able to home in on the message being conveyed by the person you're talking with. The secret to rising above the noise -- a dilemma known in the world of sound science as "the cocktail party problem" -- turns out to lie in its ability to discern patterns in the background noise and selectively ignore such patterns, according to a new study published in Current Biology earlier this month.

Frogs matingListening to a deafening chorus of Cope's gray treefrogs on a spring evening, scientists have wondered: Do female frogs use a similar strategy to pick important messages about potential mates out of the cacophony? The chorus consists of the calls of countless individual male frogs, each of which is conveying information about which species it is and how fit it is -- with faster, longer calls indicating fitter individuals. To ensure the best survival of their young, "the females have to be able to tell the appropriate species and be able to choose a high-quality male," says Norman Lee, a postdoctoral fellow in the Department of Ecology, Evolution, and Behavior. But how can they, when everyone is talking at the same time?

Working with associate professor Mark Bee and colleagues in EEB and the Department of Psychology, Lee has figured out what traits of the background noise of frog choruses allow females to tune out the hubbub and tune into the hubba-hubba -- with implications not only for our understanding of frog ecology and evolution, but also for our ability to help humans hear.

Lee knew from others' research that humans are able to hear certain sounds better in noisy settings when the background noise is "comodulated" -- meaning that the various frequencies of sound it comprises vary in loudness together. Could the fact that the background noise is comodulated be a key to the frogs' success? To find out, he first built a model of the Cope's gray treefrog's ear and used it to determine how this species may process the background chorus. He then analyzed frog choruses and discovered that the chorus input indeed is comodulated.

"What we [still] didn't know is if animals could exploit these features for improved decision-making," Lee says. To answer that question, he produced several artificial choruses made up of two noise bands centered on the call frequencies -- one in which the sound was unmodulated, meaning that it didn't vary in sound intensity; one in which the two noise bands were modulated but not together; and one in which the two noise bands were comodulated. He then played each of those in the background while presenting females with a Cope's gray treefrog call and a call simulating another species. Indeed, the females were most likely to choose the right species' call when the background noise was comodulated. Similarly, he presented two Cope's gray treefrog calls, with one being longer and repeated at a higher call rate (and so, presumably representing a more fit mate and therefore a better evolutionary choice). He found, again, that females made the best choices when the background chorus was comodulated.

"Previous studies of animal communication have generally regarded noise as a relatively static feature of the animal's acoustic environment," says Bee. "What this new work shows is not only that noisy acoustic scenes are, in fact, dynamic, but also that they are dynamic in predictable ways that animals have evolved to exploit to avoid noise-induced errors in communication."

Because frogs' ears are configured differently than those of other vertebrates and so may process sound differently, the findings hold importance not only for understanding what it takes for frogs to successfully procreate, but also for humans: Knowledge of the differences, the researchers say, could potentially be used to design better hearing aids and speech recognition systems.
-end-


University of Minnesota

Related Frogs Articles:

World's largest frogs build their own ponds for their young
The first example of 'nest'-building in an African amphibian, the Goliath frog, has been described in a new article in the Journal of Natural History, and could explain why they have grown to be giant.
Skin bacteria could save frogs from virus
Bacteria living on the skin of frogs could save them from a deadly virus, new research suggests.
Frogs find refuge in elephant tracks
Frogs need elephants. That's what a new WCS-led study says that looked at the role of water-filled elephant tracks in providing predator-free breeding grounds and pathways connecting frog populations.
An island haven for frogs in a sea of extinctions
New Guinea is one of the only places in the world where frogs are safe from the chytrid fungus that has made more than 90 species extinct.
Fluorescence discovered in tiny Brazilian frogs
An international team of researchers led by NYU Abu Dhabi Postdoctoral Associate Sandra Goutte was studying the acoustic communications of these miniature frogs.
Bacteria may help frogs attract mates
The role played by symbiotic microorganisms isolated from the skin of anurans has been discovered by researchers in Brazil.
Females prefer city frogs' tunes
Urban sophistication has real sex appeal -- at least if you're a Central American amphibian.
Frogs breed young to beat virus
Frogs from groups exposed to a deadly virus are breeding at younger ages, new research suggests.
Traffic noise stresses out frogs, but some have adapted
A new study reveals the negative effects of traffic noise on frogs and how some frogs have adapted.
Bioreactor device helps frogs regenerate their legs
A team of scientists designed a device that can induce partial hindlimb regeneration in adult aquatic African clawed frogs (Xenopus laevis) by 'kick-starting' tissue repair at the amputation site.
More Frogs News and Frogs Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab