Nav: Home

Blood test can predict onset and track progression of Huntington's disease

June 07, 2017

The first blood test that can predict the onset and progression of Huntington's disease has been identified by a UCL-led study.

The researchers say their findings, published in Lancet Neurology, should help test new treatments for the genetic brain disorder, which is fatal and currently incurable.

"This is the first time a potential blood biomarker has been identified to track Huntington's disease so strongly," said the study's senior author, Dr Edward Wild (UCL Institute of Neurology).

The test measures the neurofilament light chain (neurofilament), a protein released from damaged brain cells, which has been linked to other neurodegenerative diseases but hasn't been studied in the blood of Huntington's disease (HD) patients before.

The team, led by scientists at UCL Huntington's Disease Centre working with colleagues in Sweden, the USA, Canada, France and the Netherlands, measured neurofilament levels in blood samples from the TRACK-HD study, an international project that followed 366 volunteers for three years. They found that levels of the brain protein were increased throughout the course of HD -- even in carriers of the HD genetic mutation who were many years from showing symptoms of the disease. HD mutation carriers had neurofilament concentrations that were 2.6 times that of the control participants, and the level rose throughout the disease course from premanifest to stage 2 disease.

In the group who had no symptoms at the start of the study, the level of neurofilament predicted subsequent disease onset, as volunteers with high neurofilament levels in the blood at the start were more likely to develop symptoms in the following three years. After taking into account factors already known to predict progression -- age and a genetic marker -- the blood level of neurofilament was still able to independently predict onset, progression and the rate of brain shrinkage as measured by MRI scans.

Currently, the best biomarkers available are measured with neuroimaging or cerebrospinal fluid, which are more difficult and expensive to obtain than a blood test. The researchers say that predicting progression in mutation carriers who do not yet show symptoms has been particularly challenging.

"We have been trying to identify blood biomarkers to help track the progression of HD for well over a decade, and this is the best candidate that we have seen so far," said Dr Wild. "Neurofilament has the potential to serve as a speedometer in Huntington's disease, since a single blood test reflects how quickly the brain is changing. That could be very helpful right now as we are testing a new generation of so-called 'gene silencing' drugs that we hope will put the brakes on the condition. Measuring neurofilament levels could help us figure out whether those brakes are working."

The researchers caution that the test is not expected to be immediately helpful for individual patients. "This is the first time neurofilament has been measured in blood, so much more work is needed to understand the potential and limitations of this test," said Lauren Byrne (UCL Institute of Neurology), the study's first author. "In the future, if drugs to slow HD become available, it may well be used to guide treatment decisions. For now, this test is most promising as a much-needed tool to help us design and run clinical trials of new drugs."

Dr Robert Pacifici, chief scientific officer of CHDI Foundation, a US non-profit Huntington's disease research foundation, welcomed the development. "I can see neurofilament becoming a valuable tool to assess neuroprotection in clinical trials so that we can more quickly figure out whether new drugs are doing what we need them to. As a drug hunter, this is great news."

The study's funders included the CHDI foundation, GlaxoSmithKline, Swedish Research Council, European Research Council, Wallenberg Foundation and Wolfson Foundation.
-end-
About Huntington's disease:

Huntington's disease is a fatal genetic neurological disease. It usually develops in adulthood and causes abnormal involuntary movements, psychiatric symptoms and dementia. Approximately 10,000 people in the UK have HD with around 25,000 at risk. It is incurable, and no effective treatments exist to slow it down. Patients usually die within 20 years of the start of symptoms. HD is caused by a single known genetic mutation, and each child of a carrier of the mutation has a 50% chance of inheriting the disease.

University College London

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.