Nav: Home

Study reveals how a hormone increases sucrose accumulation in sugarcane

June 07, 2017

Chemical ripeners, also known as growth regulators, are widely used in Brazil's sugarcane industry to increase early sucrose content relative to total mass and to inhibit plant growth in order to prolong harvesting and milling, thereby increasing yields and profitability for plantation owners.

A group of researchers at the University of Campinas's Biology Institute (IB-UNICAMP) in São Paulo State, in collaboration with colleagues at the Agronomy Institute (IAC) and at the University of São Paulo's Chemistry Institute (IQ-USP), have now discovered how these substances, which are analogous to plant hormones, act on the molecular level in sugarcane to increase sucrose storage in the plant.

An article describing the study, supported by FAPESP under the aegis of its Bioenergy Research Program (BIOEN), was published in Scientific Reports, an online journal owned by Springer Nature.

"We identified genes that are activated by one of the most widely used chemical ripeners and that could be targets for future manipulation by genetic engineering in order to try to develop a sugarcane variety with higher sucrose content," said Marcelo Menossi, a professor in IB-UNICAMP's Genetics, Evolution & Bioagents Department and principal investigator for the project.

The researchers analyzed the molecular-level effects of the application of ethephon to sugarcane varieties grown in a greenhouse.

Ethephon is an ethylene-releasing compound and was the first growth regulator used for crop management and post-harvest quality in a wide range of agricultural, horticultural and forestry species. In the case of sugarcane, it remains one of the most widely used substances to stimulate ripening, increase sugar yield, inhibit flowering, and extend the harvesting and milling seasons.

The effects of ethephon on sugarcane are attributed to ethylene, a plant hormone known for its involvement in fruit ripening. Ethephon releases ethylene as it penetrates the plant after spraying.

Ethylene is therefore considered key to a better understanding of the regulation of the transition from plant growth to cane maturation, according to Menossi.

"Although ethylene was known to contribute to sucrose accumulation, it wasn't clear how the synthesis and action of this hormone affect cane maturation," he said.

To study the action of ethylene in sugarcane, before the onset of ripening, the researchers sprayed a sugarcane variety developed by IAC with ethephon and aminoethoxyvinylglycine (AVG), a growth regulator known to inhibit ethylene biosynthesis.

Five days after spraying the plants with one of the two compounds and again after 32 days (i.e., at harvest time), they measured sucrose content in samples of leaf and culm tissue.

The analysis showed that ethephon, the chemical ripener, stimulated sucrose accumulation in immature internodes. Plants treated with ethephon displayed higher sucrose levels in upper and middle internodes at harvest time.

By contrast, sucrose content fell 42% in plants treated with AVG.

"These findings confirm the importance of the presence and action of ethylene to induce cane maturation," Menossi said.

In order to evaluate the action of ethylene at the molecular level, the researchers analyzed the plants' transcriptomes to identify which genes were differentially expressed in response to ethylene release during maturation. The transcriptome is the full range of messenger RNA molecules expressed. Transcriptome analysis enables researchers to determine when and where each gene is turned on or off in the cells and tissues of an organism by analyzing the entire collection of RNA sequences.

Their analysis of the transcripts of the main enzymes involved in sucrose metabolism regulation, combined with the hormone profiles of the plants sprayed with ethephon and AVG, enabled them to identify ethylene target genes and the action of ethylene in sucrose accumulation sites. In addition, they proposed a molecular model for the interaction of ethylene with other hormones.

Ethylene activated a significant number of hormone pathway genes solely in the culm. The key hormone pathways were those involved precisely with ethylene and also with abscisic acid, another factor in cane maturation, as well as gibberellin and auxin, hormones that influence culm elongation, flowering and lateral bud growth, Menossi explained.

"If you know which genes the ripener modulates so that the plant increases sucrose accumulation, you can genetically improve the sugarcane and develop varieties that express more of these genes without needing to apply ethylene, for example," he said.

"In addition, it could be possible to identify sugarcane varieties that express these genes most highly and to facilitate the action of the ripener, since there are varieties that don't respond well to hormone application."

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...