Nav: Home

Machine learning helps detect lymphedema among breast cancer survivors

June 07, 2018

Machine learning using real-time symptom reports can accurately detect lymphedema, a distressing side effect of breast cancer treatment that is more easily treated when identified early, finds a new study led by NYU Rory Meyers College of Nursing and published in the journal mHealth.

"Using a well-trained classification algorithm to detect lymphedema based on real-time symptom reports is a highly promising tool that may improve lymphedema outcomes," said Mei R Fu, PhD, RN, FAAN, associate professor of nursing at NYU Meyers and the study's lead author.

Lymphedema is a build-up of lymph fluid that causes swelling in the arms or legs and is commonly caused by the removal of lymph nodes as part of cancer treatment. It can occur immediately after cancer surgery or as late as 20 years after surgery; a recent study found that more than 41 percent of breast cancer patients experienced lymphedema in their arms within 10 years of their surgery.

Lymphedema is one of the most dreaded adverse effects from breast cancer treatment because of its chronic nature and debilitating symptoms, including arm swelling, heaviness, tightness, achiness, stiffness, burning, and decreased mobility. While there is no cure for lymphedema, early detection and intervention can reduce symptoms and keep it from worsening, although early detection remains a challenge.

"Clinicians often detect or diagnose lymphedema based on their observation of swelling. However, by the time swelling can be observed or measured, lymphedema has typically occurred for some time, which may lead to poor clinical outcomes," said Fu.

"In our digital era, integrating technology into health care has led to advances in detecting and predicting various medical conditions," said Yao Wang, PhD, professor of electrical and computer engineering at NYU Tandon School of Engineering and the study's coauthor.

A type of artificial intelligence, machine learning is of interest to researchers due to its ability to construct algorithms that continually improve predictions and generate automated knowledge through data-driven predictions or decisions with incoming data--in this case, symptom reports. Machine learning is particularly beneficial when there are many relevant factors that are not independent, which is true for lymphedema symptoms.

In this study, the researchers used a web-based tool to collect information from 355 women who had undergone treatment for breast cancer, including surgery. In addition to sharing demographic and clinical information, including whether they had been diagnosed with lymphedema, participants were asked whether they were currently experiencing 26 different lymphedema symptoms.

Statistical and machine learning procedures were performed for data analysis. Five different classification algorithms of machine learning were compared: Decision Tree of C4.5, Decision Tree of C5.0, gradient boosting model, artificial neural network, and support vector machine. The algorithms were also compared with a conventional statistical approach that determines the optimal threshold for the symptom count based on the receiver operating curve.

The researchers found that all five machine learning approaches outperformed the standard statistical approach, and the artificial neural network achieved the best performance for detecting lymphedema. The artificial neural network was 93.75 percent accurate, correctly classifying patients to have true lymphedema cases or non-lymphedema cases based on the symptoms reported.

"Such detection accuracy is significantly higher than that achievable by current and often used clinical methods," said Fu.

The researchers note that conducting such real-time lymphedema assessment encourages patients to monitor their lymphedema status without having to visit a healthcare professional. Based on patients' symptoms and resulting risk for lymphedema, the assessment system could alert patients at risk to schedule in-person clinical visits for further evaluation. This may lessen the burden of unnecessary clinical visits on patients and the healthcare system.

"This has the potential to reduce healthcare costs and optimize the use of healthcare resources through early lymphedema detection and intervention, which could reduce the risk of lymphedema progressing to more severe stages," Fu said.
-end-
In addition to Fu and Wang, authors include Chenge Li of NYU Tandon; Zeyuan Qiu of New Jersey Institute of Technology; Deborah Axelrod and Amber A. Guth of NYU School of Medicine and NYU Perlmutter Cancer Center; Joan Scagliola of NYU Perlmutter Cancer Center; Yvette Conley of the University of Pittsburgh School of Nursing; Bradley E. Aouizerat of the Bluestone Center for Clinical Research at NYU College of Dentistry; Jeanna M. Qiu of Harvard University; Gary Yu, Janet H. Van Cleave, and Judith Haber of NYU Meyers; and Ying Kuen Cheung of Columbia University's Mailman School of Public Health.

This study was supported by National Institutes of Health (NIMHD P60 MD000538-03 and NCI 1R01CA214085-01), Judges and Lawyers for Breast Cancer Alert, Pfizer Independent Grants for Learning & Change (13371953 The-Optimal Lymph-Flow™) and the Pless Center for Nursing Research of NYU Rory Meyers College of Nursing.

About the NYU Rory Meyers College of Nursing

NYU Rory Meyers College of Nursing is a global leader in nursing education, research, and practice. It offers a bachelor of science with a major in nursing, a master of science, post-master's certificate programs, a doctor of nursing practice degree, and a doctor of philosophy in research theory and development.

New York University

Related Breast Cancer Articles:

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.
Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
More Breast Cancer News and Breast Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.