Nav: Home

Flu virus is protected by mucus when airborne, regardless of humidity

June 07, 2018

PITTSBURGH, June 7, 2018 - Mucus and other airway secretions that are expelled when a person with the flu coughs or exhales appear to protect the virus when it becomes airborne, regardless of humidity levels, a creative experiment conducted by the University of Pittsburgh and Virginia Tech discovered.

The results, published in today's issue of the Journal of Infectious Diseases, refute long-standing studies that indicated the influenza virus degrades and is inactivated sooner as the humidity increases.

"Our findings highlight the importance of mimicking real-world conditions when determining the infectivity of emerging viruses," said Seema S. Lakdawala, Ph.D., assistant professor in the Pitt School of Medicine's Department of Microbiology & Molecular Genetics. "This has critical implications when public health organizations devise ways to stem the spread of infections, particularly during pandemics."

Influenza viruses emerge every winter in temperate regions when people are in closer contact inside, better enabling person-to-person spread. But it is also much less humid inside buildings that are heated in winter, and previous experiments using aerosolized flu virus alone - not in combination with airway secretions - showed that moderate to high humidity inactivated the virus. So it was assumed that dry winter air had a protective effect that also allowed the flu virus to thrive.

Lakdawala partnered with Linsey C. Marr, Ph.D., of Virginia Tech's Department of Civil and Environmental Engineering, to put that assumption to the test. They devised a way to artificially create real-world conditions to test how long the influenza virus, when expelled by someone with the flu, would be expected to survive in a typical indoor setting under a variety of different relative humidity levels.

Marr's research team, including Virginia Tech graduate student Kaisen Lin, M.S., designed a rotating metal drum that keeps aerosols suspended while maintaining a constant relative humidity level. Lakdawala's team combined samples of human airway secretions with the 2009 pandemic H1N1 flu strain, aerosolized the mixture and sprayed it into the drum - similar to what would be expected to be emitted into a room from someone who is sick. The drum was fitted with special filters to prevent the release of the virus, and the entire experiment was run inside a biosafety cabinet.

The team ran the drum for an hour - a typical length of time that air stays in homes and other buildings before moving outside - at seven different humidity levels, representative of dry climates and heated indoor environments in winter, indoor environments during warmer seasons, and rainy and tropical climates.

Karen Kormuth, Ph.D., a post-doctoral associate in Lakdawala's laboratory, analyzed the results from the drum experiment and showed them to Lakdawala.

"I was astonished," said Lakdawala. "The flu virus remained just as infectious at all humidity levels. The airway secretions were protecting it for at least the length of time it would take a typical home to exchange most of its air."

"The result was surprising," Marr added, "because our previous work suggested that the flu virus survived better at low humidity. We thought this might help explain why flu season occurs in the winter, when humidity is low indoors, but we now have to rethink what's happening with the virus when it's in droplets and aerosols."

The team stresses that the immediate take-away from their study is that, during flu season, homes and offices should employ a combination of increased air exchange rates coupled with filtration or UV irradiation of recirculated air, as well as regular disinfection of high-touch surfaces, such as door knobs, keyboards, phones and desks.

Future research should involve testing other strains of flu and different pathogens to learn if they, too, are protected by airway secretions when airborne.

Virginia Tech was a collaborating institution.
-end-
Additional authors on this study are Aaron J. Prussin II, Ph.D., Andrea J. Tiwari, Ph.D., and Steve S. Cox, Ph.D., all of Virginia Tech; Eric P. Vejerano, Ph.D., of the University of South Carolina; and Michael M. Myerburg, M.D., of Pitt.

This work was supported by National Institutes of Health (NIH) award 1-DP2-A1112243, and grants AI108600-01 and AI049820; as well as NIH and Cystic Fibrosis Foundation Research Development Program grant P30DK072506.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu.

http://www.upmc.com/media

University of Pittsburgh Schools of the Health Sciences

Related Influenza Virus Articles:

Antibodies protect against wide range of influenza B virus strains
Researchers have identified two antibodies that protect mice against lethal infections of influenza B virus, report scientists at Washington University School of Medicine in St.
Influenza A virus directly modulates eosinophil responses
Eosinophils residing in the airways of mice respond to influenza A virus (IAV) infection through alterations in surface expression of various markers necessary for migration and cellular immunity responses, according to research published in the Journal of Leukocyte Biology by researchers from Le Bonheur Children's Hospital and the University of Tennessee Health Science Center.
Influenza virus-induced oxidized DNA activates inflammasomes
In this study, a research group at The Institute of Medical Science, The University of Tokyo (IMSUT) observed nucleus- and mitochondria-derived double-stranded DNA (dsDNA) in extracellular web-like structures in the cytoplasm and extracellular space around influenza virus-infected macrophages.
CT of coronavirus disease (COVID-19) versus CT of influenza virus pneumonia
An open-access American Journal of Roentgenology (AJR) article investigating the differences in CT findings between coronavirus disease (COVID-19) pneumonia and influenza virus pneumonia found that most lesions from COVID-19 were located in the peripheral zone and close to the pleura, whereas influenza virus was more prone to show mucoid impaction and pleural effusion.
Influenza: researchers show that new treatment reduces spread of virus
Researchers have shown that a new antiviral drug for influenza can treat the infection at the same time as reducing the risk of transmission to others, offering powerful potential to change the way we manage influenza outbreaks -- particularly in vulnerable groups.
Recent research points the way toward a practical nutraceutical strategy for coping with RNA virus infections including influenza and coronavirus
In a compelling article in Progress in Cardiovascular Diseases, published by Elsevier, Mark McCarty of the Catalytic Longevity Foundation, San Diego, CA, USA, and James DiNicolantonio, PharmD, a cardiovascular research scientist at Saint Luke's Mid America Heart Institute, Kansas City, MO, USA, propose that certain nutraceuticals may help provide relief to people infected with encapsulated RNA viruses such as influenza and coronavirus.
How the influenza virus achieves efficient viral RNA replication
New insights on how subunits of the influenza virus polymerase co-evolve to ensure efficient viral RNA replication are provided by a study published Oct.
Expression of M gene segment of influenza A virus determines host range
The host range of the influenza A virus (IAV) is restricted by dysregulated expression of the M viral gene segment, according to a study published August 15, 2019 in the open-access journal PLOS Pathogens by Anice Lowen and John Steel of Emory University School of Medicine, and colleagues.
Virulence factor of the influenza A virus mapped in real-time
In a recent study published in BBA -- General Subjects, Kanazawa university researchers have used high-speed microscopy to investigate native structure and conformational dynamics of hemagglutinin in influenza A.
Human antibody reveals hidden vulnerability in influenza virus
The ever-changing 'head' of an influenza virus protein has an unexpected Achilles heel, report NIAID-funded scientists.
More Influenza Virus News and Influenza Virus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.