Nav: Home

Researchers from the UPC and the IAC discover one of the most massive neutron stars

June 07, 2018

Neutron stars (often called pulsars) are stellar remnants that have reached the end of their evolutionary life: they result from the death of a star of between 10 and 30 Solar masses. Despite their small size (about 20 kilometres in diameter), neutron stars have more mass than the Sun, so they are extremely dense.

Researchers from the Universitat Politècnica de Catalunya (UPC) and the Canary Islands Institute of Astrophysics (IAC) used an innovative method to measure the mass of one of the heaviest neutron stars known to date. Discovered in 2011 and called PSR J2215+5135, with about 2.3 Solar masses it is one of the most massive of the more than 2,000 neutron stars known to date. Although a study published in 2011 reported evidence of a neutron star with 2.4 Solar masses, the most massive neutron stars that had previously achieved a consensus among scientists, reported in 2010 and 2013, have 2 Solar masses.

The study was led by Manuel Linares, Marie-Curie researcher of the Astronomy and Astrophysics Group (GAA), linked to the UPC's Department of Physics, in collaboration with the astronomers Tariq Shahbaz and Jorge Casares of the IAC. The researchers used data obtained from the Gran Telescopio Canarias (GTC), the largest optical and infrared telescope in the world, the William Herschel Telescope (WHT), the Isaac Newton Telescope Group (ING) and the IAC-80 telescope, in combination with dynamical models of binary stars with irradiation. An article reporting on the results of the study, entitled "Peering into the dark side: magnesium lines establish a massive neutron star in PSR J2215+5135", was published in The Astrophysical Journal.

A pioneering measurement method

The team developed a more accurate method than those used to date to measure the mass of neutron stars in compact binaries. PSR J2215+5135 is part of a binary system, in which two stars orbit around a common centre of mass: a "normal" star (like the Sun) "accompanies" the neutron star. The secondary or companion star is strongly irradiated by the neutron star.

The more massive the neutron star is, the faster the companion star moves in its orbit. The novel method uses spectral lines of hydrogen and magnesium to measure the speed at which the companion star moves. This allowed the team led by Manuel Linares to measure for the first time the speed of both sides of the companion star (the irradiated side and the shaded side), and to show that a neutron star can have more than twice the Sun's mass.

This new method can also be applied to the rest of this growing population of neutron stars: over the last 10 years, the Fermi-LAT NASA gamma ray telescope has revealed dozens of pulsars similar to PSR J2215+5135. In principle, the method can also be used to measure the mass of black holes and white dwarfs (remnants of stars that die with more than 30 or fewer than 10 Solar masses, respectively) when they are found in similar binary systems in which irradiation is important.

Denser than an atomic nucleus

Being able to determine the maximum mass of a neutron star has very important consequences for many fields of astrophysics, as well as for nuclear physics. The interactions between nucleons (the neutrons and protons that make up the nucleus of an atom) at high densities are one of the great mysteries of physics today. Neutron stars are a natural laboratory for studying the densest and most exotic states of matter that can be imagined.

The results of the project also suggest that in order to support the weight of 2.3 Solar masses, the repulsion between particles in the nucleus of the neutron star must be sufficiently strong. This would indicate that we are unlikely to find free quarks or other exotic forms of matter in the centre of the neutron star.
-end-


Instituto de Astrofísica de Canarias (IAC)

Related Neutron Star Articles:

Microscopic deformation of a neutron star inferred from a distance of 4500 light-years
Gravitational waves, which are ripples in spacetime, have recently provided a new window to the universe.
Method proposed for more accurate determinations of neutron star radii
Neutron stars are the smallest and densest astrophysical objects with visible surfaces in the Universe.
Unequal neutron-star mergers create unique "bang" in simulations
In a series of simulations, an international team of researchers determined that some neutron star collisions not only produce gravitational waves, but also electromagnetic radiation that should be detectable on Earth.
ALMA finds possible sign of neutron star in supernova 1987A
Based on ALMA observations and a theoretical follow-up study, scientists suggest that a neutron star might be hiding deep inside the remains of Supernova 1987A.
Scientists discover pulsating remains of a star in an eclipsing double star system
Scientists from the University of Sheffield have discovered a pulsating ancient star in a double star system, which will allow them to access important information on the history of how stars like our Sun evolve and eventually die.
How big is the neutron?
The size of neutrons cannot be measured directly: it can only be determined from experiments involving other particles.
The force is strong in neutron stars
Physicists at MIT and elsewhere have for the first time characterized the strong nuclear force, and the interactions between protons and neutrons, at extremely short distances.
New neutron detector can fit in your pocket
Researchers at Northwestern University and Argonne National Laboratory have developed a new material that opens doors for a new class of neutron detectors.
Star fruit could be the new 'star' of Florida agriculture
Cover crops may increase sustainability of carambola groves.
Russian astrophysicists discovered a neutron star with an unusual magnetic field structure
Russian scientists discovered a unique neutron star, the magnetic field of which is apparent only when the star is seen under a certain angle relative to the observer.
More Neutron Star News and Neutron Star Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.