Nav: Home

Dark inflation opens up a gravitational window onto the first moments after the Big Bang

June 07, 2018

Dark matter and dark energy may have driven inflation, the exponential expansion of the Universe moments after the Big Bang. A new cosmological model proposed by physicists at the University of Warsaw, which takes dark inflation into account, is the first to outline a precise chronology of the main events during the early history of our Universe. The model makes a spectacular prediction: that it should be possible to detect gravitational waves that were formed just fractions of a second after the creation of spacetime.

What do we know about the evolution of Universe immediately after the Big Bang? In spite of extensive research carried out over decades, current cosmological models still do not outline a precise chronology of events. Researchers at the Faculty of Physics at the University of Warsaw (UW Physics) have developed a new model in which the exponential expansion of dark matter and dark energy plays a key role. The dark inflation model organises the thermal history of the Universe in chronological order and predicts that we should soon be able to detect primordial gravitational waves formed immediately after the Big Bang.

The earliest structure of the Universe we can study today is cosmic microwave background (CMB) radiation. This electromagnetic relic dates back to around 380,000 years after the Big Bang and is surprisingly homogenous, even in regions which are so far apart that light couldn't have covered the distance between them in the time available. In 1979, Alan Guth proposed inflation as a simple explanation for this uniformity: the current vast distances between the homogenous regions are so great because at one time there was an extremely rapid expansion of spacetime, enlarging a billion billion billion times over in just fractions of a second. This is said to have been driven by a hypothetical inflation field and particles known as inflatons.

"The fundamental problem with inflation is that we don't really know when exactly it occurred and at what energy levels. The range of energies at which inflation could have occurred is vast, stretching over 70 orders of magnitude," explains Prof. Zygmunt Lalak (UW Physics). He adds, "Inflation is described as a period of supercooled expansion. However, for cosmological models to be consistent, following inflation the Universe should have undergone reheating to a very high temperature, and we have no idea how or when this might have occurred. Just like with inflation itself, we are dealing with energies across a range of 70 orders of magnitude. As a result, the thermal history of the Universe is yet to be described."

Measurements of CMB radiation using the Planck satellite have been used to estimate the composition of the contemporary Universe. It turns out that dark energy comprises as much as 69% of all extant energy/matter, with dark matter comprising 26% and ordinary matter just 5%. Dark matter and ordinary matter don't interact at all, or their interactions are so weak we are only just starting to notice dark matter's gravitational impact on the movement of stars in galaxies and galaxies in clusters. Dark energy should be a factor responsible for the accelerated expansion of the Universe.

"Our inflation model is significantly different from those proposed in the past. We started with the assumption that since today dark matter and dark energy comprise up to 95% of the Universe's structure, then both factors must have also been extremely important immediately after the Big Bang. This is why we describe the dark sector of the Universe as responsible for the inflation process," explains Dr. Michal Artymowski (UW Physics), main author of the paper published in the Journal of Cosmology and Astroparticle Physics.

In the model proposed by the theoretical physicists from the University of Warsaw, inflation is driven by a scalar field. The properties of the field mean that inflation isn't permanent and it must come to an end: at some point the rate of expansion of the Universe will start slowing down instead of accelerating. At the point of this shift, new relativistic particles are formed, behaving in the same way as radiation. Some of these particles are described by the Standard Model, while others may correspond to particles predicted by theories beyond the Standard Model, such as supersymmetry.

"In our models, the new particles are the result of gravitation, which is a very weak force. The process of formation of particles is ineffective, and at the end of inflation inflatons continue to dominate the Universe," says Olga Czerwinska, PhD student at UW Physics.

In order to recreate the observed dominance of radiation in the Universe, inflatons should lose energy rapidly. The researchers propose two physical mechanisms which could be responsible for the process. They reveal that the new model predicts the course of events of the Universe's thermal history with a far greater accuracy than previously.

The model's predictions concerning primordial gravitational waves are especially interesting. Gravitational waves are vibrations of spacetime itself, and they have already been detected several times. In each case their source has been the merger of a pair of black holes or neutron stars. Current cosmological models predict that gravitational waves should also appear as a result of inflation. However, all the evidence suggested that vibrations of spacetime caused by inflation would be so weak by now that no existing or future detectors would have been able to register them. These predications were revised when physicists from the University of Warsaw took into account the effects of the dark sector of the Universe.

"Gravitational waves lose energy as radiation. However, inflatons must lose it significantly faster. If inflation involved the dark sector, the input of gravitational waves increased proportionally. This means that traces of the primordial gravitational waves are not as weak as we originally thought!" adds Dr. Artymowski.

The estimates made by the Warsaw physicist are optimistic. Data suggests that primordial gravitational waves could be detected by observatories currently at the design stage or under construction, such as the Deci-Hertz Interferometer Gravitational Wave Observatory (DECIGO), Laser Interferometer Space Antenna (LISA), European Pulsar Timing Array (EPTA) and Square Kilometre Array (SKA). The first events could be detected in the coming decade. For cosmologists this would be an unprecedented discovery, paving the way for research into gravitational events which took place immediately after the Big Bang - a period hitherto impossible to study.

The dark inflation model has another fascinating aspect: it is highly dependent on gravitational theory. By comparing the model's predictions with data collected by gravitational observatories, cosmologists should be able to provide new verifications of Einstein's general theory of relativity. What happens if they find discrepancies? It would mean that observational data provides the first information on the properties of real gravity.
-end-
The research was funded by grants from the Polish Ministry of Science and Higher Education and the National Science Centre.

Physics and Astronomy first appeared at the University of Warsaw in 1816, under the then Faculty of Philosophy. In 1825 the Astronomical Observatory was established. Currently, the Faculty of Physics' Institutes include Experimental Physics, Theoretical Physics, Geophysics, Department of Mathematical Methods and an Astronomical Observatory. Research covers almost all areas of modern physics, on scales from the quantum to the cosmological. The Faculty's research and teaching staff includes ca. 200 university teachers, of which 88 are employees with the title of professor. The Faculty of Physics, University of Warsaw, is attended by ca. 1000 students and more than 170 doctoral students.

SCIENTIFIC PAPERS:

"Gravitational wave signals and cosmological consequences of gravitational reheating"
M. Artymowski, O. Czerwinska, Z. Lalak, M. Lewicki
Journal of Cosmology and Astroparticle Physics, Volume 2018, April 2018
DOI: 10.1088/1475-7516/2018/04/046

CONTACTS:

Prof. Zygmunt Lalak
Faculty of Physics, University of Warsaw
tel.: +48 22 5532652
email: zygmunt.lalak@fuw.edu.pl

Dr. Michal Artymowski
Faculty of Physics, University of Warsaw
tel.: +48 22 5532819
email: michal.artymowski@fuw.edu.pl

RELATED LINKS:

https://www.ligo.org/

The LIGO gravitational wave observatory.

http://www.virgo-gw.eu/

The Virgo gravitational wave observatory.

http://www.fuw.edu.pl/

Faculty of Physics, University of Warsaw.

http://www.fuw.edu.pl/informacje-prasowe.html

Press office of the Faculty of Physics, University of Warsaw.

IMAGES:

FUW180607b_fot01es.jpg
HR: http://www.fuw.edu.pl/press/images/2018/FUW180607b_fot01e.jpg
A comparison of the current inflation model of the evolution of the Universe to the dark inflation model recently proposed by scientists from the Faculty of Physics at the University of Warsaw. (Source: UW Physics)

Faculty of Physics University of Warsaw

Related Dark Matter Articles:

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.
Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.