Nav: Home

How solar prominences vibrate

June 07, 2018

When we look at the surface of the Sun the solar prominences are seen as dark filaments that populate the disk or as a blaze of plasma above it. Solar prominences are very dense plasma structures that levitate in the solar atmosphere. It is generally believed that the star's magnetic field supports them so that they do not fall on the surface due to their own weight. These magnetic structures can accumulate a large amount of energy that, when released, produces eruptions ejecting the prominence material into the interplanetary space.

Manuel Luna, researcher at the IAC and the ULL, leads the team that has cataloged about 200 solar prominence oscillations detected in the first half of 2014. This analysis, published today in The Astrophysical Journal Supplement Series, has served to verify that almost half of these events have been of large-amplitude. That is, oscillations with speeds between 10 km/s (36000 km/h) and 100 km/s. It has also been proven that these large-amplitude events are more common than previously thought.

The project is part of an international collaboration that began in 2015 through the International Space Science Institute (ISSI) and also the NASA project for the study of this type of oscillations.

Thanks to this compilation, a large variety of events have been found and it has been determined that, in many cases, the oscillations are produced by nearby flares. That is, by the sudden release of energy in the solar atmosphere.

With the collected data, a statistical study of the properties of the oscillations has been carried out. These movements consist of a cyclic movement of the prominences between two positions. It has been seen in it, that the oscillations (vibrations) have a period of approximately one hour. These periods are a characteristic of the prominences and reveal fundamental properties of their magnetic structure and the distribution of their mass. In addition, the oscillations show a large damping, or what is the same the vibration is reduced considerably after few cycles of oscillation. It is unknown why most of the protuberances oscillate with a period of one hour or why their movement is damped so quickly, therefore it will be necessary to continue investigating.

The data suggest that "the direction of movement of the oscillations forms an angle of about 27 degrees with the main axis of the prominence," Luna explains. He adds: "This direction coincides with the previous estimates of the orientation of the magnetic field." In addition, using seismological techniques, researchers have been able to deduce details about the geometry and intensity of the magnetic field that supports the prominences.

This study opens a new window to the investigation of the structure of the solar prominences and to the mechanisms that eventually destabilize them producing their eruption. In the future, the authors want to extend this analysis to an entire solar cycle to understand the evolution of these structures over the 11 years it lasts. To achieve this, artificial intelligence and big-data processing techniques will have to be applied.
-end-


Instituto de Astrofísica de Canarias (IAC)

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Earth's Magnetic Field Secrets: An Illusion Mixed With Reality
by Dennis Brooks (Author)

Know Your Magnetic Field: Change Your Thinking, Change Your Life.
by William E. Gray (Author)

Magnetic Fields: Expanding American Abstraction, 1960s to Today
by Valerie Cassel Oliver (Author), Lowery Stokes Sims (Author), Erin Dziedzic (Editor), Melissa Messina (Editor)

NOW 2 kNOW Electro-Magnetic Fields
by Dr. T G D'Alberto (Author)

Power Tools for Health: How Pulsed Magnetic Fields (Pemfs) Help You
by Msc William Pawluk MD (Author), Caitlin Layne (Author)

Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions (Astrophysics and Space Science Library)
by Hermann Lühr (Editor), Johannes Wicht (Editor), Stuart A. Gilder (Editor), Matthias Holschneider (Editor)

The Magnetic Fields
by André Breton (Author), Philippe Soupault (Author), David Gascoyne (Translator)

Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use
by Heinz E. Knoepfel (Author)

Analysis and Computation of Electric and Magnetic Field Problems: Pergamon International Library of Science, Technology, Engineering and Social Studies
by K. J. Binns (Author)

Magnetic Field(s)
by Ron Loewinsohn (Author), Steve Erickson (Preface)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...