Nav: Home

How solar prominences vibrate

June 07, 2018

When we look at the surface of the Sun the solar prominences are seen as dark filaments that populate the disk or as a blaze of plasma above it. Solar prominences are very dense plasma structures that levitate in the solar atmosphere. It is generally believed that the star's magnetic field supports them so that they do not fall on the surface due to their own weight. These magnetic structures can accumulate a large amount of energy that, when released, produces eruptions ejecting the prominence material into the interplanetary space.

Manuel Luna, researcher at the IAC and the ULL, leads the team that has cataloged about 200 solar prominence oscillations detected in the first half of 2014. This analysis, published today in The Astrophysical Journal Supplement Series, has served to verify that almost half of these events have been of large-amplitude. That is, oscillations with speeds between 10 km/s (36000 km/h) and 100 km/s. It has also been proven that these large-amplitude events are more common than previously thought.

The project is part of an international collaboration that began in 2015 through the International Space Science Institute (ISSI) and also the NASA project for the study of this type of oscillations.

Thanks to this compilation, a large variety of events have been found and it has been determined that, in many cases, the oscillations are produced by nearby flares. That is, by the sudden release of energy in the solar atmosphere.

With the collected data, a statistical study of the properties of the oscillations has been carried out. These movements consist of a cyclic movement of the prominences between two positions. It has been seen in it, that the oscillations (vibrations) have a period of approximately one hour. These periods are a characteristic of the prominences and reveal fundamental properties of their magnetic structure and the distribution of their mass. In addition, the oscillations show a large damping, or what is the same the vibration is reduced considerably after few cycles of oscillation. It is unknown why most of the protuberances oscillate with a period of one hour or why their movement is damped so quickly, therefore it will be necessary to continue investigating.

The data suggest that "the direction of movement of the oscillations forms an angle of about 27 degrees with the main axis of the prominence," Luna explains. He adds: "This direction coincides with the previous estimates of the orientation of the magnetic field." In addition, using seismological techniques, researchers have been able to deduce details about the geometry and intensity of the magnetic field that supports the prominences.

This study opens a new window to the investigation of the structure of the solar prominences and to the mechanisms that eventually destabilize them producing their eruption. In the future, the authors want to extend this analysis to an entire solar cycle to understand the evolution of these structures over the 11 years it lasts. To achieve this, artificial intelligence and big-data processing techniques will have to be applied.
-end-


Instituto de Astrofísica de Canarias (IAC)

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.