Nav: Home

Breaking through a tumor's defenses

June 07, 2018

Key messages:
  • Researchers identify the dominant immune cells contributing to tumour tolerance by the immune system
  • Silencing the tumour-shielding cells of the immune system allows T cell attack on tumours and restricts tumour growth
  • Research findings suggest new targets for cancer immunotherapies


In research published today, Babraham Institute researchers have shown that some tumours use not one but two levels of protection against the immune system. Knocking out one level boosted the protective effects of the second and vice versa. The research demonstrates that a two-pronged approach targeting both cell types simultaneously may offer a promising route for the development of new cancer immunotherapies.

The development and growth of a cancerous tumour often occurs despite a fully functioning immune system, capable of recognising and killing cancer cells. Tumours hijack certain cells in our immune system to create a growth-permissive environment and give protection from the anti-tumour elements. In particular, tumours recruit immune cell allies, cells called tumour-associated macrophages (TAMs) and regulatory T cells (Treg), to evade immune attack.

Specifically inhibiting the recruitment of TAMs by blocking the actions of a protein called colony-stimulating factor 1 (CSF1) reduces tumour growth in mouse models. Although clinical trials of inhibitors targeting TAMs are underway, results in patients haven't been as effective as hoped. A lack of understanding of how TAMs promote tumour progression potentially limits the therapeutic value of these inhibitors.

Likewise, inhibiting the action of Treg cells in mice by inactivating a key enzyme called PI3K delta gives protection against a range of tumours. A PI3K delta inhibitor is approved for treatment of chronic lymphocytic leukaemia (CLL) and follicular non-Hodgkin lymphoma (NHL), but the potential for PI3K delta inhibitors for the treatment of solid cancers in humans is yet to be demonstrated.

The research published today used a mouse model of colorectal cancer to explore the synergy between TAMs and Treg cells, showing that each cell type was able to compensate for the effects of the loss of the other to maintain the tumour's protection from the immune system. However, jointly inhibiting TAMs and Treg cells substantially inhibited tumour growth.

Dr David Gyori, first author on the paper, said: "Strikingly, preventing tumour immunosuppression by both TAMs and Treg cells caused almost complete tumour rejection by the immune system and half of the mice became completely tumour-free. Taken together, our findings provide a convincing rationale for assessing the clinical value of combinatorial therapies targeting the CSF1 receptor and PI3K delta."

Professor Klaus Okkenhaug, one of the authors on the study by Gyori et al. and a parallel study by Lim et al. said: "Harnessing the power of the immune system to kill cancer cells is becoming a successful therapeutic strategy. These studies demonstrate the importance of fully understanding the interplay between the many elements of the immune system to ensure that combinatorial therapies are both synergistic and effective."
-end-


Babraham Institute

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.