Nav: Home

Waves move across the human brain to support memory

June 07, 2018

New York, NY--June 7, 2018--The coordination of neural activity across widespread brain networks is essential for human cognition. Researchers have long assumed that oscillations in the brain, commonly measured for research purposes, brain-computer interfacing, and clinical tests, were stationary signals that occurred independently at separate brain regions. Biomedical engineers at Columbia Engineering have discovered a new fundamental feature of brain oscillations: they actually move rhythmically across the brain, reflecting patterns of neuronal activity that propagate across the cortex. The study was published today in Neuron.

"We also found that these traveling waves moved more reliably when subjects performed well while performing a working memory task," says Joshua Jacobs, assistant professor of biomedical engineering and senior author of the paper. "This indicates that traveling waves are significant for memory and cognition--our findings show that these oscillations are an important mechanism for large-scale coordination in the human brain."

Jacobs' team studied direct brain recordings from 77 epilepsy patients, who had had electrodes placed in widespread brain areas for seizure mapping. For Jacobs' study, the patients were asked to perform a memory task. In examining the brain recordings from these patients, the researchers found large brain regions in individual patients with "theta" and "alpha" oscillations, which are linked to cognition, at specific frequencies between 2 to 15 Hz. These oscillations indicate that the neurons in this region rhythmically activated to support cognition, but the specific role performed by these oscillations has remained unclear.

The group used two novel methods to analyze the data. First, they measured individual oscillations simultaneously from multiple electrodes instead of using the more common method of measuring each brain wave separately from individual locations. Second, they developed a new analytical framework that enabled them to measure the instantaneous movement of each traveling wave. Using this approach, they found that the oscillations were actually traveling waves that moved across the cortex at 0.25-0.75 m/s.

"The traveling waves were relevant behaviorally because their propagation correlated with task events and was more consistent when subjects performed the task well," says Honghui Zhang, a postdoc in Jacobs' lab and the paper's lead author.

The study's findings demonstrate that the brain uses neuronal oscillations to propagate information across different regions, and that, by organizing neural processes across space and time, traveling waves play a significant role in supporting brain connectivity.

"Our research indicates that, when a researcher records a brain oscillation, neural activity is being communicated across the brain," says Jacobs. "So, in addition to opening new directions for fundamental brain research on connectivity and memory, our work suggests that clinicians can measure patterns of traveling waves to characterize an individual's brain connectivity. Traveling waves are like ocean waves, moving across the surface of the cortex, and may also provide a new type of signal that can be used for brain-computer interfaces."

"This recent work from the Jacobs lab is incredibly exciting," says Kareem Zaghloul, an investigator at the National Institutes of Health's Functional and Restorative Neurosurgery Unit. "The study of traveling waves opens up new directions for brain research, as it now allows us to consider not only what the brain is representing but how information moves around the brain "

Jacobs is currently exploring how traveling waves are relevant for other behaviors, including spatial navigation and long-term memory. His group is also developing new methodologies to test whether other types of brain oscillations, such as those at faster frequencies, also behave as traveling waves.
-end-
About the Study

The study is titled "Theta and alpha oscillations are traveling waves in the human neocortex."

Authors are: Honghui Zhang, Andrew J.Watrous, Ansh Patel, and Joshua Jacobs (Department of Biomedical Engineering, Columbia Engineering.)

The study was funded by the National Institute of Mental Health (#MH104606).

The authors declare no competing interests.

LINKS:

Paper: https://www.cell.com/neuron/fulltext/S0896-6273(18)30417-3 DOI: 10.1016/j.neuron.2018.05.019
http://engineering.columbia.edu/
http://bme.columbia.edu/joshua-jacobs
http://bme.columbia.edu

Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 200 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

Columbia University School of Engineering and Applied Science

Related Memory Articles:

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
Seeing it both ways: Visual perspective in memory
Think of a memory from your childhood. Are you seeing the memory through your own eyes, or can you see yourself, while viewing that child as if you were an observer?
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
Memory gene goes viral
Two independent teams of scientists from the University of Utah and the University of Massachusetts Medical School have discovered that a gene crucial for learning, called Arc, can send its genetic material from one neuron to another by employing a strategy commonly used by viruses.
Neurobiology: The chemistry of memory
Learning requires the chemical adaptation of individual synapses. Researchers have now revealed the impact of an RNA-binding protein that is intimately involved in this process on learning and memory formation and learning processes.
More Memory News and Memory Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.