Nav: Home

How to suck carbon dioxide from the sky for fuels and more

June 07, 2018

Someday, the gasoline you buy might trace its heritage to carbon dioxide pulled straight out of the sky rather than from oil pumped out of the ground. By removing emitted carbon dioxide from the atmosphere and turning it into fresh fuels, engineers at a Canadian firm have demonstrated a scalable and cost-effective way to make deep cuts in the carbon footprint of transportation with minimal disruption to existing vehicles. Their work appears June 7 in the journal Joule.

"The carbon dioxide generated via direct air capture can be combined with sequestration for carbon removal, or it can enable the production of carbon-neutral hydrocarbons, which is a way to take low-cost carbon-free power sources like solar or wind and channel them into fuels that can be used to decarbonize the transportation sector," says lead author David Keith, founder and chief scientist of Carbon Engineering, a Canadian CO2-capture and clean fuels enterprise, and a professor of applied physics and public policy at Harvard University.

Direct air capture technology works almost exactly like it sounds. Giant fans draw ambient air into contact with an aqueous solution that picks out and traps carbon dioxide. Through heating and a handful of familiar chemical reactions, that same carbon dioxide is re-extracted and ready for further use--as a carbon source for making valuable chemicals like fuels, or for storage via a sequestration strategy of choice. It's not just theory--Carbon Engineering's facility in British Columbia is already achieving both CO2 capture and fuel generation.

The idea of direct air capture is hardly new, but the successful implementation of a scalable and cost-effective working pilot plant is. After conducting a full process analysis and crunching the numbers, Keith and his colleagues claim that realizing direct air capture on an impactful scale will cost roughly $94-$232 per ton of carbon dioxide captured, which is on the low end of estimates that have ranged up to $1,000 per ton in theoretical analyses.

That price-point is low enough to use direct air capture to start tackling the roughly 20% of global carbon emissions that result from driving, flying, trucking, and other ways of getting people and goods around. "Electricity from solar and wind is intermittent; we can take this energy straight from big solar or wind installations at great sites where it's cheap and apply it to reclaim and recycle carbon dioxide into new fuel," Keith says, adding that "Making fuels that are easy to store and transport eases the challenge of integrating renewables into the energy system."

The resulting fuels, including gasoline, diesel, and jet fuel, are compatible with existing fuel distribution and transportation infrastructure. Thanks to ultra-low life cycle carbon intensities, they are a promising route for reducing carbon emissions in heavy transportation and other sectors of the energy system that are demanding and difficult to electrify.

Centuries of unchecked human carbon emissions also mean that atmospheric carbon dioxide is a virtually unlimited feedstock for transformation into new fuels. "We are not going to run out of air anytime soon," adds Steve Oldham, CEO of Carbon Engineering. "We can keep collecting carbon dioxide with direct air capture, keep adding hydrogen generation and fuel synthesis, and keep reducing emissions through this AIR TO FUELSTM pathway."

Keith and Oldham are optimistic that they have reduced scale-up risks by implementing direct air capture at reasonable costs using standard industrial equipment. That means that all the pieces are in place to move on to full-size plants capable of manufacturing 2,000 barrels of fuels per day-- totaling over 30 million gallons per year across plants. Commercialization of such plants would allow direct air capture to make a dent in transportation emissions by connecting low-cost renewable energy to low-carbon transportation fuels using Carbon Engineering's AIR TO FUELSTM pathway.

"After 100 person-years of practical engineering and cost analysis, we can confidently say that while air capture is not some magical cheap solution, it is a viable and buildable technology for producing carbon-neutral fuels in the immediate future and for removing carbon in the long run," says Keith.
In addition to funds raised by Carbon Engineering, this work was supported by the British Columbia Innovative Clean Energy Fund, Sustainable Development Technologies Canada, the Industrial Research Assistanceship Program, and the U.S. Department of Energy.

Joule, Keith et al.: "A process for capturing CO2 from the atmosphere"

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: To receive Cell Press media alerts, contact

Cell Press

Related Carbon Articles:

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science
Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.
Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.
Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.
Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.
Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.
Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?
First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
More Carbon News and Carbon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.