Nav: Home

A nanotech sensor that turns molecular fingerprints into bar codes

June 07, 2018

Infrared spectroscopy is the benchmark method for detecting and analyzing organic compounds. But it requires complicated procedures and large, expensive instruments, making device miniaturization challenging and hindering its use for some industrial and medical applications and for data collection out in the field, such as for measuring pollutant concentrations. Furthermore, it is fundamentally limited by low sensitivities and therefore requires large sample amounts.

However, scientists at EPFL's School of Engineering and at Australian National University (ANU) have developed a compact and sensitive nanophotonic system that can identify a molecule's absorption characteristics without using conventional spectrometry.

Their system consists of an engineered surface covered with hundreds of tiny sensors called metapixels, which can generate a distinct bar code for every molecule that the surface comes into contact with. These bar codes can be massively analyzed and classified using advanced pattern recognition and sorting technology such as artificial neural networks. This research - which sits at the crossroads of physics, nanotechnology and big data - has been published in Science.

Translating molecules into bar codes

The chemical bonds in organic molecules each have a specific orientation and vibrational mode. That means every molecule has a set of characteristic energy levels, which are commonly located in the mid-infrared range - corresponding to wavelengths of around 4 to 10 microns. Therefore, each type of molecule absorbs light at different frequencies, giving each one a unique "signature." Infrared spectroscopy detects whether a given molecule is present in a sample by seeing if the sample absorbs light rays at the molecule's signature frequencies. However, such analyses require lab instruments with a hefty size and price tag.

The pioneering system developed by the EPFL scientists is both highly sensitive and capable of being miniaturized; it uses nanostructures that can trap light on the nanoscale and thereby provide very high detection levels for samples on the surface. "The molecules we want to detect are nanometric in scale, so bridging this size gap is an essential step," says Hatice Altug, head of EPFL's BioNanoPhotonic Systems Laboratory and a coauthor of the study.

The system's nanostructures are grouped into what are called metapixels so that each one resonates at a different frequency. When a molecule comes into contact with the surface, the way the molecule absorbs light changes the behavior of all the metapixels it touches.

"Importantly, the metapixels are arranged in such a way that different vibrational frequencies are mapped to different areas on the surface," says Andreas Tittl, lead author of the study.

This creates a pixelated map of light absorption that can be translated into a molecular bar code - all without using a spectrometer.

The scientists have already used their system to detect polymers, pesticides and organic compounds. What's more, their system is compatible with CMOS technology.

"Thanks to our sensors' unique optical properties, we can generate bar codes even with broadband light sources and detectors," says Aleksandrs Leitis, a coauthor of the study.

There are a number of potential applications for this new system. "For instance, it could be used to make portable medical testing devices that generate bar codes for each of the biomarkers found in a blood sample," says Dragomir Neshev, another coauthor of the study.

Artificial intelligence could be used in conjunction with this new technology to create and process a whole library of molecular bar codes for compounds ranging from protein and DNA to pesticides and polymers. That would give researchers a new tool for quickly and accurately spotting miniscule amounts of compounds present in complex samples.
-end-
Source:

Andreas Tittl, Aleksandrs Leitis, Mingkai Liu, Filiz Yesilkoy, Duk-Yong Choi, Dragomir N. Neshev, Yuri S. Kivshar, and Hatice Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science

BioNanoPhotonic Systems Laboratory (BIOS) / Interfaculty Institute of Bioengineering IBI / School of Engineering - School of Life Sciences / EPFL Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra

Ecole Polytechnique Fédérale de Lausanne

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with LegosĀ® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".