Nav: Home

Mars exhumes methane on a seasonal cycle, Curiosity reveals; rover also detects ancient organic matter

June 07, 2018

Data from the Curiosity rover, part of two separate studies, furthers scientists' understanding of methane on Mars - suggesting some of it may be trapped in water-based crystals - and identifies additional carbon-bearing molecules, central to understanding processes and conditions on the planet. In the first study, Christopher Webster et al. describe detailed, in situ measurements of atmospheric methane on Mars, which show a seasonal variation in its abundance. Small concentrations of methane have previously been detected in Mars' atmosphere, but its origins have been the subject of great debate. On Earth most methane is produced by biological sources, but numerous abiotic processes have been proposed to explain the Martian methane. Here, the researchers analyzed three Martian years' (55 Earth months') worth of atmospheric measurements collected by the Curiosity rover. The data reveal that background methane levels on the Red Planet have a strong seasonal cycle, ranging between 0.24 to 0.65 parts per billion, peaking near the end of summer in the Northern hemisphere (end of winter in the Southern hemisphere). The authors rule out numerous potential sources of the methane, ultimately suggesting that large amounts of the gas may be stored in the cold Martian subsurface in water-based crystals called clathrates. They propose that seasonal changes in temperature could cause the fluctuating release of methane observed by the rover. In a separate study, Jennifer L. Eigenbrode and colleagues analyze drill samples of soil, also taken by the Curiosity rover, which reveal a number of different organic compounds. Limited organic compounds have previously been identified at the Sheepbed mudstone site in Gale crater. Even so, researchers' understanding of ancient organic matter in Martian sediments is lacking. Here, the researchers analyzed new samples from two sites in the Gale crater: Mojave and Confidence Hills, which harbor mudstones that are approximately three billion years old. Tools on board the Curiosity rover extracted the new samples and heated them, analyzing the molecules that were released. The data reveal the presence of several organic molecules and volatiles reminiscent of organic-rich sedimentary rock found on Earth, including: thiophene, 2- and 3-methylthiophenes, methanethiol, and dimethylsulfide. The authors note that, because many of the molecules analyzed here differ by a single carbon sidechain, they may be fragments from larger molecules. Indeed, a comparison of these samples to organic traces in Martian meteorites also suggests that the former are derived from larger organic molecules. The Gale crater samples retain exceptionally high levels of sulfur, which the author propose helped preserve the organic matter. The implications of these two studies are highlighted in a Perspective by Inge Loes ten Kate.

American Association for the Advancement of Science

Related Methane Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Methane seeps in the Canadian high Arctic
Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming.
Methane emissions from trees
A new study from the University of Delaware is one of the first in the world to show that tree trunks in upland forests actually emit methane rather than store it, representing a new, previously unaccounted source of this powerful greenhouse gas.
Oil production releases more methane than previously thought
Emissions of methane and ethane from oil production have been substantially higher than previously estimated, particularly before 2005.
Bursts of methane may have warmed early Mars
The presence of water on ancient Mars is a paradox.
New method for quantifying methane emissions from manure management
The EU Commision requires Denmark to reduce drastically emissions of greenhouse gases from agriculture.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.
Arctic Ocean methane does not reach the atmosphere
250 methane flares release the climate gas methane from the seabed and into the Arctic Ocean.
Long-sought methane production mechanism identified
Researchers have identified the mechanism by which bacteria create methane, a potent greenhouse gas.
Retreat of the ice followed by millennia of methane release
Methane was seeping from the seafloor for thousands of years following the retreat of the Barents Sea ice sheet, shows a groundbreaking new study in Nature Communications.

Related Methane Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".