Nav: Home

Mars exhumes methane on a seasonal cycle, Curiosity reveals; rover also detects ancient organic matter

June 07, 2018

Data from the Curiosity rover, part of two separate studies, furthers scientists' understanding of methane on Mars - suggesting some of it may be trapped in water-based crystals - and identifies additional carbon-bearing molecules, central to understanding processes and conditions on the planet. In the first study, Christopher Webster et al. describe detailed, in situ measurements of atmospheric methane on Mars, which show a seasonal variation in its abundance. Small concentrations of methane have previously been detected in Mars' atmosphere, but its origins have been the subject of great debate. On Earth most methane is produced by biological sources, but numerous abiotic processes have been proposed to explain the Martian methane. Here, the researchers analyzed three Martian years' (55 Earth months') worth of atmospheric measurements collected by the Curiosity rover. The data reveal that background methane levels on the Red Planet have a strong seasonal cycle, ranging between 0.24 to 0.65 parts per billion, peaking near the end of summer in the Northern hemisphere (end of winter in the Southern hemisphere). The authors rule out numerous potential sources of the methane, ultimately suggesting that large amounts of the gas may be stored in the cold Martian subsurface in water-based crystals called clathrates. They propose that seasonal changes in temperature could cause the fluctuating release of methane observed by the rover. In a separate study, Jennifer L. Eigenbrode and colleagues analyze drill samples of soil, also taken by the Curiosity rover, which reveal a number of different organic compounds. Limited organic compounds have previously been identified at the Sheepbed mudstone site in Gale crater. Even so, researchers' understanding of ancient organic matter in Martian sediments is lacking. Here, the researchers analyzed new samples from two sites in the Gale crater: Mojave and Confidence Hills, which harbor mudstones that are approximately three billion years old. Tools on board the Curiosity rover extracted the new samples and heated them, analyzing the molecules that were released. The data reveal the presence of several organic molecules and volatiles reminiscent of organic-rich sedimentary rock found on Earth, including: thiophene, 2- and 3-methylthiophenes, methanethiol, and dimethylsulfide. The authors note that, because many of the molecules analyzed here differ by a single carbon sidechain, they may be fragments from larger molecules. Indeed, a comparison of these samples to organic traces in Martian meteorites also suggests that the former are derived from larger organic molecules. The Gale crater samples retain exceptionally high levels of sulfur, which the author propose helped preserve the organic matter. The implications of these two studies are highlighted in a Perspective by Inge Loes ten Kate.
-end-


American Association for the Advancement of Science

Related Methane Articles:

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.