Nav: Home

First tetrapods of Africa lived within the Devonian Antarctic Circle

June 07, 2018

The first African fossils of Devonian tetrapods (four-legged vertebrates) show these pioneers of land living within the Antarctic circle, 360 million years ago.

The evolution of tetrapods from fishes during the Devonian period was a key event in our distant ancestry. New-found fossils from the latest Devonian Waterloo Farm locality near Grahamstown in the Eastern Cape, South Africa, published today in Science, force a major reassessment of this event. "Whereas all previously found Devonian tetrapods came from localities which were in tropical regions during the Devonian, these specimens lived within the Antarctic circle," explains lead author, Dr Robert Gess of the Albany Museum in Grahamstown, and co-author Professor Per Ahlberg of Uppsala University in Sweden. The research was supported by the South African DST-NRF Centre of Excellence in Palaeosciences, based at the University of the Witwatersrand and the Millennium Trust.

The first African Devonian tetrapods

Two new species, named Tutusius and Umzantsia, are Africa's earliest known four-legged vertebrates by a remarkable 70 million years. The approximately metre-long Tutusius umlambo (named in honour of Archbishop Emeritus Desmond Tutu) and the somewhat smaller Umzantsia amazana are both incomplete. Tutusius is represented by a single bone from the shoulder girdle, whereas Umzantsia is known from a greater number of bones, but they both appear similar to previously known Devonian tetrapods. Alive, they would have resembled a cross between a crocodile and a fish, with a crocodile-like head, stubby legs, and a tail with a fish-like fin.

The Waterloo Farm locality (where the tetrapods were discovered) is a roadcut first revealed in 2016 after controlled rock-cutting explosions by the South African National Roads Agency (SANRAL) along the N2 highway between Grahamstown and the Fish River. This cutting exposed dark grey mudstones of the Witpoort Formation that represent an ancient environment of a brackish, tidal river estuary that contain abundant fossils of animals and plants.

The first tetrapod found outside of tropical regions

The real importance of Tutusius and Umzantsia lies in where they were found.

Devonian tetrapod fossils are found in widely scattered localities. However, if the continents are mapped back to their Devonian positions, it emerges that all previous finds are from rocks deposited in the palaeotropics - between 30 degrees north and south of the equator. Almost all come from Laurussia, a supercontinent that later fragmented into North America, Greenland and Europe.

The much larger southern supercontinent, Gondwana, which incorporated present-day Africa, South America, Australia, Antarctica, and India, has hitherto yielded almost no Devonian tetrapods, with only an isolated jaw (named Metaxygnathus) and footprints, being found in eastern Australia. Because Australia was the northernmost part of Gondwana, extending into the tropics, an assumption developed that tetrapods evolved in the tropics, most likely in Laurussia. By extension it was assumed that movement of vertebrates from water onto land (terrestrialisation) also occurred in the tropics. Attempts to understand the causes of these major macroevolutionary steps therefore focussed on conditions prevalent in tropical water bodies.

The Waterloo Farm tetrapods not only come from Gondwana, but from its southernmost part: reconstructed to have been more than 70 degrees south, within the Antarctic circle. Abundant plant fossils show that forests grew nearby, so it wasn't frozen, but it was definitely not tropical and during winter it will have experienced months of complete darkness. This finding changes our understanding of the distribution of Devonian tetrapods. We now know that tetrapods occurred throughout the world by the Late Devonian and that their evolution and terrestrialisation could realistically have occurred anywhere.

South Africa now adds insights into the emergence of land animals to its incredible fossil record, which also includes transition to mammals from reptile-like ancestors and the evolution of humans. There is probably not another country on the planet that so fully documents the long and dramatic evolutionary history of our own lineage.
-end-


University of the Witwatersrand

Related Evolution Articles:

An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Pain free, thanks to evolution
African mole-rats are insensitive to many different kinds of pain.
Evolution in the gut
Evolution and dietary habits interact and determine the composition of bacteria in the digestive tract.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.