Nav: Home

Honeybees zero in on nothing

June 07, 2018

Scientists have discovered honeybees can understand the concept of zero, putting them in an elite club of clever animals that can grasp the abstract mathematical notion of nothing.

By demonstrating that even tiny brains can comprehend complex, abstract concepts, the surprise finding opens possibilities for new, simpler approaches to developing Artificial Intelligence.

In research published in the journal Science, Australian and French researchers tested whether honey bees can rank numerical quantities and understand that zero belongs at the lower end of a sequence of numbers.

VIEW AND EMBED THE VIDEO

Associate Professor Adrian Dyer, from RMIT University in Melbourne, Australia, said the number zero was the backbone of modern maths and technological advancements.

"Zero is a difficult concept to understand and a mathematical skill that doesn't come easily - it takes children a few years to learn," Dyer said.

"We've long believed only humans had the intelligence to get the concept, but recent research has shown monkeys and birds have the brains for it as well.

"What we haven't known - until now - is whether insects can also understand zero."

As well as being a critical pollinator, the honeybee is an exceptional model species for investigating insect cognition, with previous research showing they can learn intricate skills from other bees and even understand abstract concepts like sameness and difference.

But bee brains have fewer than 1 million neurons - compared with the 86,000 million neurons of a human brain - and little was known about how insect brains would cope with being tested on such an important numeric skill.

RMIT PhD researcher Scarlett Howard set out to test the honeybee on its understanding, marking individual honeybees for easy identification and luring them to a specially-designed testing apparatus.

The bees were trained to choose an image with the lowest number of elements in order to receive a reward of sugar solution.

For example, the bees learned to choose three elements when presented with three vs. four; or two elements when presented with two vs. three.

When Howard periodically tested the bees with an image that contained no elements versus an image that had one or more, the bees understood that the set of zero was the lower number - despite never having been exposed to an "empty set".

Dyer, a researcher in the Bio Inspired Digital Sensing-Lab (BIDS-Lab) in RMIT's Digital Ethnography Research Centre, said the findings opened the door to new understandings of how different brains could represent zero.

"This is a tricky neuroscience problem," he said.

"It is relatively easy for neurons to respond to stimuli such as light or the presence of an object but how do we, or even an insect, understand what nothing is?

"How does a brain represent nothing? Could bees and other animals that collect lots of food items, have evolved special neural mechanisms to enable the perception of zero?

"If bees can learn such a seemingly advanced maths skill that we don't even find in some ancient human cultures, perhaps this opens the door to considering the mechanism that allows animals and ourselves to understand the concept of nothing."

One of the problems in the development of artificial intelligence is enabling robots to operate in very complex environments, Dyer said.

"Crossing a road is simple for adult humans, we understand if there are no approaching cars, no bikes or trams, then it is probably ok to cross," he said.

"But what is zero, how do we represent this for so many complex object classes to make decisions in complex environments?

"If bees can perceive zero with a brain of less than a million neurons, it suggests there are simple efficient ways to teach AI new tricks."

The research was conducted in both Australia and France and involved many control experiments to validate the findings.

Study co-author, Dr Aurore Avarguès-Weber from the University of Toulouse in France, said: "The discovery that bees can show such elaborated understanding of numbers was really surprising given their tiny brain."

"Large brains are thus not necessary to play with numbers. This capacity is therefore probably shared by many other animals."
-end-
The paper "Numerical ordering of zero in honeybees" (DOI: 10.1126/science.aar4975) is published in Science today.

RMIT University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.