Nav: Home

New laser makes silicon 'sing'

June 07, 2018

Yale scientists have created a new type of silicon laser that uses sounds waves to amplify light. A study about the discovery appears June 8 in the online edition of the journal Science.

In recent years, there has been increasing interest in translating optical technologies -- such as fiber optics and free-space lasers -- into tiny optical or "photonic" integrated circuits. Using light rather than electricity for integrated circuits permits sending and processing information at speeds that would be impossible with conventional electronics. Researchers say silicon photonics -- optical circuits based on silicon chips -- are one of the leading platforms for such technologies, thanks to their compatibility with existing microelectronics.

"We've seen an explosion of growth in silicon photonic technologies the past few of years," said Peter Rakich, an associate professor of applied physics at Yale who led the research. "Not only are we beginning to see these technologies enter commercial products that help our data centers run flawlessly, we also are discovering new photonic devices and technologies that could be transformative for everything from biosensing to quantum information on a chip. It's really an exciting time for the field."

The researchers said this rapid growth has created a pressing need for new silicon lasers to power the new circuits -- a problem that has been historically difficult due to silicon's indirect bandgap. "Silicon's intrinsic properties, although very useful for many chip-scale optical technologies, make it extremely difficult to generate laser light using electrical current," said Nils Otterstrom, a graduate student in the Rakich lab and the study's first author. "It's a problem that's stymied scientists for more than a decade. To circumvent this issue, we need to find other methods to amplify light on a chip. In our case, we use a combination of light and sound waves."

The laser design corrals amplified light within a racetrack shape -- trapping it in circular motion. "The racetrack design was a key part of the innovation. In this way, we can maximize the amplification of the light and provide the feedback necessary for lasing to occur," Otterstrom said.

To amplify the light with sound, the silicon laser uses a special structure developed in the Rakich lab. "It's essentially a nanoscale waveguide that's is designed to tightly confine both light and sound waves and maximize their interaction," Rakich said.

"What's unique about this waveguide is that there are two distinct channels for light to propagate," added Eric Kittlaus, a co-author of the study and a graduate student in the Rakich lab. "This allows us to shape the light-sound coupling in a way that permits remarkably robust and flexible laser designs."

Without this type of structure, the researchers explained, amplification of light using sound would not be possible in silicon. "We've taken light-sound interactions that were virtually absent in these optical circuits, and have transformed them into the strongest amplification mechanism in silicon," Rakich said. "Now, we're able to use it for new types of laser technologies no one thought possible 10 years ago."

Otterstrom said there were two main challenges in developing the new laser: "First, designing and fabricating a device where the amplification outpaces the loss, and then figuring out the counter-intuitive dynamics of this system," he said. "What we observe is that while the system is clearly an optical laser, it also generates very coherent hypersonic waves."

The research team said these properties may lead to a number of potential applications ranging from integrated oscillators to new schemes for encoding and decoding information. "Using silicon, we can create a multitude of laser designs, each with unique dynamics and potential applications," said co-author Ryan Behunin, an assistant professor at Northern Arizona University and a former member of the Rakich lab. "These new capabilities dramatically expand our ability to control and shape light in silicon photonic circuits."
-end-


Yale University

Related Silicon Articles:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.
For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.
Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.
A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.
Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.
2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.
Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.
Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.
More Silicon News and Silicon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.