Nav: Home

New computational tool predicts progression of metabolic syndrome in mice

June 07, 2018

Scientists have developed a new computational model that accurately predicts the gradual, long-term progression of metabolic syndrome in mice. The model, created by Yvonne Rozendaal of Eindhoven University of Technology in the Netherlands and colleagues, is presented in PLOS Computational Biology.

Metabolic syndrome is a collection of several factors: obesity, insulin resistance, elevated lipid levels in the blood, and high blood pressure. A person with metabolic syndrome faces increased risk of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. Computational modeling of metabolic syndrome can provide new insights into its development, but previous modeling efforts have not fully captured the gradual progression and complexity of the disease.

In the new study, Rozendaal and colleagues developed a new computational model that describes glucose, lipid, and cholesterol metabolism - central factors in metabolic syndrome. A previously developed simulation method was applied to the model, allowing for accurate prediction of gradual, long-term development of the disease. The scientists then ran the model using data from real-world experiments in which mice were fed diets that resulted in development of metabolic syndrome.

The researchers found that their modeling approach correctly predicted progression of metabolic syndrome in the mice, as well as development of comorbidities, such as fatty liver disease. The model also uncovered the unexpected existence of two disease subtypes in the mice: those with elevated lipid levels and those without. It correctly predicted underlying metabolic differences that could explain the two subtypes, which were confirmed with experimental data.

"Our model is an important step in understanding the development of metabolic syndrome, offering new opportunities to identify strategies to prevent the disease and its comorbidities," Rozendaal says. "Our framework can also be applied to study long-term development of other complex, progressive diseases."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006145

Citation: Rozendaal YJW, Wang Y, Paalvast Y, Tambyrajah LL, Li Z, Willems van Dijk K, et al. (2018) In vivo and in silico dynamics of the development of Metabolic Syndrome. PLoS Comput Biol 14(6): e1006145. https://doi.org/10.1371/journal.pcbi.1006145

Funding: This study was supported by the European Union's Research and Innovation programme (https://ec.europa.eu/research/health/index.cfm); grant FP7-HEALTH-305707: "A systems biology approach to RESOLVE the molecular pathology of two hallmarks of patients with metabolic syndrome and its co-morbidities; hypertriglyceridemia and low HDL-cholesterol". YW is supported by a VENI grant from NWO-ZonMW (91617027). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Diabetes Articles:

The role of vitamin A in diabetes
There has been no known link between diabetes and vitamin A -- until now.
Can continuous glucose monitoring improve diabetes control in patients with type 1 diabetes who inject insulin
Two studies in the Jan. 24/31 issue of JAMA find that use of a sensor implanted under the skin that continuously monitors glucose levels resulted in improved levels in patients with type 1 diabetes who inject insulin multiple times a day, compared to conventional treatment.
Complications of type 2 diabetes affect quality of life, care can lead to diabetes burnout
T2D Lifestyle, a national survey by Health Union of more than 400 individuals experiencing type 2 diabetes (T2D), reveals that patients not only struggle with commonly understood complications, but also numerous lesser known ones that people do not associate with diabetes.
Type 2 diabetes and obesity -- what do we really know?
Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world.
A better way to predict diabetes
An international team of researchers has discovered a simple, accurate new way to predict which women with gestational diabetes will develop type 2 diabetes after delivery.
The Lancet Diabetes & Endocrinology: Older Americans with diabetes living longer without disability, US study shows
Older Americans with diabetes born in the 1940s are living longer and with less disability performing day to day tasks than those born 10 years earlier, according to new research published in The Lancet Diabetes & Endocrinology journal.
Reverse your diabetes -- and you can stay diabetes-free long-term
A new study from Newcastle University, UK, has shown that people who reverse their diabetes and then keep their weight down remain free of diabetes.
New cause of diabetes
Although insulin-producing cells are found in the endocrine tissue of the pancreas, a new mouse study suggests that abnormalities in the exocrine tissue could cause cell non-autonomous effects that promotes diabetes-like symptoms.
The Lancet Diabetes & Endocrinology: Reducing sugar content in sugar-sweetened drinks by 40 percent over 5 years could prevent 1.5 million cases of overweight and obesity in the UK and 300,000 cases of diabetes
A new study published in The Lancet Diabetes & Endocrinology journal suggests that reducing sugar content in sugar sweetened drinks (including fruit juices) in the UK by 40 percent over five years, without replacing them with any artificial sweeteners, could prevent 500,000 cases of overweight and 1 million cases of obesity, in turn preventing around 300,000 cases of type 2 diabetes, over two decades.
Breastfeeding lowers risk of type 2 diabetes following gestational diabetes
Women with gestational diabetes who consistently and continuously breastfeed from the time of giving birth are half as likely to develop type 2 diabetes within two years after delivery, according to a study from Kaiser Permanente published today in Annals of Internal Medicine.

Related Diabetes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".