Nav: Home

Secrets of fish population changes revealed

June 07, 2018

Populations of fish in the ocean are notoriously variable, waxing and waning in often unpredictable ways. Knowing what drives changes in fish population sizes is important for managing fisheries and conserving species.

For the first time, scientists have linked the ecology of adult fish populations inhabiting coral reefs with the dispersal of baby fish between reefs, reporting the dynamics of a living network called a "marine metapopulation."

"It's not like studying deer in a forest, where one need only count births and deaths to understand how population size changes, which is difficult enough," says senior author Mark Hixon, professor in the Department of Biology at the University of Hawaii at Manoa.

"The challenge of understanding changes in reef fish abundance in a metapopulation is to measure simultaneously egg production by adults on multiple reefs and the dispersal of baby fish among those reefs, as well as other factors," explains first author Darren Johnson, assistant professor in the Department of Biological Sciences at California State University, Long Beach.

Challenge indeed. Like many ocean species, most coral reef fishes cast their tiny babies (called "larvae") into the ocean currents, where they may or may not eventually find a reef on which to settle.

"The larvae are like lottery tickets, some of which are lucky and most of which perish," reports co-author Mark Christie, assistant professor in the Department of Biological Sciences at Purdue University. "The larvae that survive may return to the same reef as their parents or settle on a reef hundreds of miles away."

But how can these tiny babies be tracked, let alone linked to their parents?

New genetic methods analyzing small samples of fin tissue from captured and released fish allowed the scientists to compare adult bicolor damselfish in the Bahamas with baby fish appearing on the same or other reefs over three years, thereby matching parents with their offspring.

"Such patterns of larval connectivity have now been documented many times using genetic methods," says co-author Tim Pusack, assistant professor at Williams College, "but we closed the population life-cycle loop by integrating larval dispersal with egg production by adults."

Quantifying what they called "demographic connectivity," the scientists calculated larval dispersal as a function of initial egg production by adding artificial nests to reefs in which the damselfish laid their eggs.

"We counted how many eggs each nest produced, thereby learning how many offspring were produced at each reef," reports co-author Christopher Stallings, associate professor in the College of Marine Science at the University of South Florida. "Combining these data with the genetic parentage data, we were able to estimate how many of the larvae that leave a reef come home, and how many travel to other reefs."

The most important reefs for replenishing the overall metapopulation showed high levels of successful larval dispersal relative to the number of eggs produced.

Studying only larval dispersal alone, or egg production alone, both typical of previous studies, did not provide a clear picture of the drivers of fish abundance.

"This is the first field study to successfully measure both dispersal and egg production," reports Oregon State University fisheries oceanographer J. Wilson White, who was not involved in the study. "These results reinforce the need to link those two pieces to understand population changes."

The integration of such difficult to measure information will allow scientists to identify the most valuable reefs to protect for conservation and management of coral reef fishes.
-end-
Funded by the National Science Foundation, this research was recently published in the peer-reviewed scientific journal Ecology.

University of Hawaii at Manoa

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...