Lead-free, efficient perovskite for photovoltaic cells

June 07, 2018

A KAIST research team has proposed a perovskite material, Cs2Au2I6 that serves as a potential active material for highly efficient lead-free thin-film photovoltaic devices. This material is expected to lay the foundation to overcome previously known limitations of perovskite including its stability and toxicity issues.

As strong candidates for next-generation high-efficiency photovoltaic cells, perovskite photovoltaic cells have a maximum photoconversion efficiency of 22%, comparable to high-performance crystalline silicon photovoltaic cells. In addition, perovskite-based cells can be fabricated at low temperatures, thereby bringing about dramatic cost reductions.

However, it has been noted that conventional organic-inorganic hybrid perovskite materials exhibit low stability, eventually degrading their performance and making them unfit for continued use. Moreover, their inclusion of lead has undermined their environmental friendliness.

In light of this, a joint team led by Professor Hyungjun Kim from the KAIST Department of Chemistry and Professor Min Seok Jang from the School of Electrical Engineering has analyzed a previously discovered perovskite material, Cs2Au2I6, consisting of only inorganic substances and investigated its suitability for application in thin-film photovoltaic devices. Theoretical investigations suggests that this new perovskite material is not only as efficient but also more stable and environment friendly compared to the conventional perovskite materials. For this analysis, the team developed multiscale multiphysics simulation frameworks. Atomic-scale first-principle quantum calculations were carried out to study the optical properties of the proposed material, and device-scale electromagnetic simulations were conducted to suggest that the material could indeed serve as a promising photovoltaic substance at the device level.

From this point onward, the research team plans to extend the study in two directions: an empirical study to apply the perovskite material in real-world photovoltaic cells and a theoretical analysis to find the optimal and highly stable material for photovoltaic cells. The team said, "Perovskite materials are highly efficient, but in order to completely replace the conventional solar cells, their stability and toxicity issues must first be resolved." They added that this research is expected to accelerate related studies in pursuit of high-efficiency, environment-friendly perovskite materials.
-end-
This research, led by post-doc researcher Lamjed Debbichi and master's candidate Songju Lee, was selected as the front cover article of Advanced Materials on March 22.

The Korea Advanced Institute of Science and Technology (KAIST)

Related Photovoltaic Cells Articles from Brightsurf:

A versatile photodetector assisted by photovoltaic and bolometric effects
A versatile photodetector based on MoTe2/VO2 heterostructure integrates photovoltaic and bolometric effects.

Nanodots made of photovoltaic material support waveguide modes
New spectroscopic technique for studying nanostructures demonstrates that stibnite nanodots can act as high-optical-quality waveguides and are promising candidates as photoswitchable materials for future applications

New discovery settles long-standing debate about photovoltaic materials
Scientists have theorized that organometallic halide perovskites-- a class of light harvesting 'wonder' materials for applications in solar cells and quantum electronics -- are so promising due to an unseen yet highly controversial mechanism called the Rashba effect.

Development of new photovoltaic commercialization technology
A technology to further accelerate the commercialization of Colloidal Quantum Dot(CQD) Photovoltaic(PV) devices, which are expected to be next-generation photovoltaic devices, has been developed.

Organic photovoltaic cell with 17% efficiency and superior processability for large-area coating
The research group from the Institute of Chemistry, Chinese Academy of Sciences, led by Prof.

A consensus statement establishes the protocols to assess and report stability of perovskite photovoltaic devices
The existing characterization procedures to evaluate emerging photovoltaic devices are not appropriate for halide perovskite solar cells, a new generation of solar cells called to overcome the present state-of-the-art technologies.

Anti-solar cells: A photovoltaic cell that works at night
What if solar cells worked at night? That's no joke, according to Jeremy Munday, professor in the Department of Electrical and Computer Engineering at UC Davis.

Photovoltaic nanotubes
Physicists discovered a novel kind of nanotube that generates current in the presence of light.

Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.

Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.

Read More: Photovoltaic Cells News and Photovoltaic Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.