Nav: Home

Solved: How tides can trigger earthquakes

June 07, 2019

The tides are turning in a quest to solve an earthquake mystery.

Years ago, scientists realized that earthquakes along mid-ocean ridges -- those underwater mountain ranges at the edges of the tectonic plates -- are linked with the tides. But nobody could figure out why there's an uptick in tremors during low tides.

"Everyone was sort of stumped, because according to conventional theory, those earthquakes should occur at high tides," explained Christopher Scholz, a seismologist at Columbia University's Lamont-Doherty Earth Observatory.

In a study published today in Nature Communications, he and his colleagues have uncovered the mechanism for this seeming paradox, and it comes down to the magma below the mid-ocean ridges.

"It's the magma chamber breathing, expanding and contracting due to the tides, that's making the faults move," said Scholz, who co-led the study along with Lamont-Doherty graduate student Yen Joe Tan.

Going against the tide

The low tide correlation is surprising because of the way the mid-ocean fault moves. Scholz described the fault as a tilted plane that separates two blocks of earth. During movement, the upper block slides down with respect to the lower one. So, scientists expected that at high tides, when there is more water sitting on top of the fault, it would push the upper block down and cause the earthquakes. But that's not what happens. Instead, the fault slips down during low tide, when forces are actually pulling upwards -- "which is the opposite of what you'd expect," said Scholz.

To get to the bottom the mystery, he, Tan, and Fabien Albino from the University of Bristol studied the Axial Volcano along the Juan de Fuca Ridge in the Pacific Ocean. Because the volcano erupts every ten years or so, scientists have set up dense networks of ocean bottom instruments to monitor it. The team used the data from those instruments to model and explore different ways the low tides could be causing the tremors.

In the end, it came down to a component that no one else had considered before: the volcano's magma chamber, a soft, pressurized pocket below the surface. The team realized that when the tide is low, there is less water sitting on top of the chamber, so it expands. As it puffs up, it strains the rocks around it, forcing the lower block to slide up the fault, and causing earthquakes in the process.

Furthermore, said Scholz, the tidal earthquakes in this region are "so sensitive that we can see details in the response that nobody could ever see before." When the team charted the earthquake rate versus the stress on the fault, they realized that even the tiniest stress could trigger an earthquake. The tidal data helped to calibrate this effect, but the triggering stress could be caused by anything -- such as the seismic waves from another earthquake, or fracking wastewater pumped into the ground.

"People in the hydrofracking business want to know, is there some safe pressure you can pump and make sure you don't produce any earthquakes?" said Scholz. "And the answer that we find is that there isn't any -- it can happen at any level of stress."

Of course, a small stress over a small area isn't going to cause a devastating earthquake, and the exact amount of stress needed varies from place to place. "Our point is there's no intrinsic stress that has to be exceeded to cause an earthquake," says Scholz. "There isn't any rule of thumb."
-end-
Contact: Christopher Scholz
scholz@ldeo.columbia.edu
(845) 365-8360

Lamont-Doherty Earth Observatory is Columbia University's home for Earth science research. Its scientists develop fundamental knowledge about the origin, evolution and future of the natural world, from the planet's deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity. http://www.ldeo.columbia.edu | @LamontEarth

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth. http://www.earth.columbia.edu.

Earth Institute at Columbia University

Related Stress Articles:

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
More Stress News and Stress Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...