Nav: Home

Modelling reveals new insight into the electrical conductivity of ionic liquids

June 07, 2019

A collaborative investigation has revealed new insight into how room temperature ionic liquids (RTILs) conduct electricity, which may have a great potential impact for the future of energy storage.

The research focuses on the debate surrounding the physical mechanism of the electrical conductivity of RTILs. Their charged positive and negative organic ions lead them to be good conductors, but the conductivity seems paradoxical. Their high conductivity arises from their high density of charged ions within the liquid, but this density should also mean that the positive and negative ions are close enough to neutralise one another, creating new, neutral particles which cannot support an electrical current. The modelling attempts to identify how conductivity is maintained in RTILs in light of these contradictory factors.

The research involved an international group of researchers, including Professor Nikolai Brilliantov of the University of Leicester and led by Professor Alexei Kornyshev of Imperial College London and Professor Guang Feng of the Huazhong University of Science and Technology.

Researchers elaborated special numerical methods and theoretical approaches to trace the dynamics of particles in RTILs. They discovered that, most of the time, positive and negative ions reside together in neutral pairs or clusters, forming a neutral substance which cannot conduct electricity. From time to time however, positive and negative ions emerge by pairs as charged particles in different parts of the liquid, making the liquid conductive.

The emergence of these ions is caused by thermal fluctuations. Suddenly and randomly the ions receive a portion of energy from the surrounding fluid, which helps them to release themselves from the 'paired' neutral state and become free charged particles. This state is only temporary, however: after some time, they will return back to their paired neutral state as they join with another ion of opposite charge.

As this happens, another ionic pair elsewhere in the liquid is splitting into free charged particles, thereby sustaining the conductivity of the liquid and its electrical current in a kind of ongoing 'relay race' of charges. This is similar to the behaviour observed in crystalline semiconductors, where the positive and negative charge carriers also emerge in pairs due to thermal fluctuations. It is therefore expected that a rich variety of physical phenomena observed in semiconductors might also be revealed in RTILs in the future.

Just as these phenomena in semiconductors are exploited for many applications, this research reveals that there may be potential too for RTILs to be exploited in new and innovative ways, with possible uses ranging from supercapacitors, fuel cells and batteries to various power devices.

Professor Brilliantov, Chair in Applied Mathematics and the University of Leicester's lead on the project, said: "Understanding of the conductivity mechanism of RTILs seems to open new horizons in designing ionic liquids with the desired electrical properties."
The research was published on Monday 6 May 2019 in Physical Review X.

University of Leicester

Related Conductivity Articles:

Granular material conductivity increases in mysterious ways under pressure
In a recent study published in EPJ E, a French team of physicists made systematic measurements of the electrical resistance -- which is inversely related to conductivity -- of metallic, oxidized granular materials in a single 1-D layer and in 3-D, under compression.
Discovery of new transparent thin film material could improve electronics and solar cells
A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class.
'Persistent photoconductivity' offers new tool for bioelectronics
Researchers have developed a new approach for manipulating the behavior of cells on semiconductor materials, using light to alter the conductivity of the material itself.
The secrets of vibration-enhanced conductivity in graphene
Graphene still holds some unexplained qualities, which are important in connection with electronic applications where high-conductivity matters.
A flexible transistor that conforms to skin
Researchers have created a stretchy transistor that can be elongated to twice its length with only minimal changes in its conductivity.
Bright future for energy devices
A new material invented by Michigan Technological University researchers embeds sodium metal in carbon and could improve electrode performance in energy devices.
Tortoise electrons trying to catch up with hare photons give graphene its conductivity
How electrons interact with other electrons at quantum scale in graphene affects how quickly they travel in the material, leading to its high conductivity.
Researchers find way to tune thermal conductivity of 2-D materials
Researchers have found an unexpected way to control the thermal conductivity of two-dimensional (2-D) materials, which will allow electronics designers to dissipate heat in electronic devices that use these materials.
New technique uses electrical conductivity to measure blood in dry blood spot analysis
Researchers from The University of Texas at Arlington have demonstrated that electrical conductivity can be an effective means to precisely measure the amount of blood present in dry blood spot analysis, providing a new alternative to the current preferred approach of measuring sodium levels.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Conductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...