Nav: Home

Worm study sparks hope for slowing muscle decline

June 07, 2019

Muscle decline caused by ageing and certain diseases could be dramatically slowed by stopping a chain reaction that damages cells, new research shows.

The study revealed the previously unknown steps by which dysfunction of mitochondria - the so-called "powerhouses" of cells - harms muscle health and leads to atrophy (wasting away).

The research team, from the universities of Exeter and Nottingham (UK) and Tohoku University in Japan, showed that inhibiting various stages of this process suppressed muscle atrophy.

The research was carried out on a species of worm called Caenorhabditis elegans - recently used in a muscle study on the International Space Station because their muscle cells resemble those of humans.

"Mitochondrial dysfunction is a key feature of several muscle diseases, but treatments are currently limited," said Dr Timothy Etheridge, of the University of Exeter.

"Our research shows that mitochondrial dysfunction causes calcium to build up in cells, which in turn activates enzymes that degrade collagen.

"Collagen is vital for giving structure to the outside of cells, so degradation of collagen destabilises muscle.

"In this study, we used experimental drugs to inhibit the enzymes that degrade collagen - and the results show this suppressed muscle decline caused by dysfunctional mitochondria.

"We found the same effect in worms used to model Duchenne muscular dystrophy, which causes severe muscle weakness."

More research is needed, but the findings raise the prospect of new therapies to delay muscle atrophy caused by ageing and conditions such as Duchenne muscular dystrophy.
-end-
This work was funded in part by Japan's Ministry of Education, Culture, Sports, Science and Technology, the Cross-Ministerial Strategic Innovation Promotion Program, Advanced Research and Development Programs for Medical Innovation, the BBSRC, the UK Space Agency and the Science and Technology Facilities Council.

The paper, published in the US Experimental Biology Association FASEB Journal, is entitled: "Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans."

University of Exeter

Related Enzymes Articles:

How nature builds hydrogen-producing enzymes
A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
How host-cell enzymes combat the coronavirus
Host-cell enzymes called PARP12 and PARP14 are important for inhibiting mutant forms of a coronavirus, according to a study published May 16 in the open-access journal PLOS Pathogens by Stanley Perlman of the University of Iowa, Anthony Fehr of the University of Kansas, and colleagues.
New method enables 'photographing' of enzymes
Scientists at the University of Bonn have developed a method with which an enzyme at work can be 'photographed'.
More Enzymes News and Enzymes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...