How genes interact to build tissues and organisms

June 07, 2019

Although the knowledge we have about human cells and tissues has steadily increased over recent decades, many things remain unknown. For instance, cells exist in transient, dynamic states and understanding them is fundamental to decipher diseases and find cures. Classic techniques used in the lab to study cell types faced limitations and did not enable a finely detailed profile of cell function.

To overcome this obstacle, a group of scientists at the National Centre for Genomic Analysis (CNAG-CRG) from the Centre for Genomic Regulation (CRG), in Barcelona, Spain, led by Holger Heyn, developed a new computational tool, based on the mathematical Graph theory, to infer global, large-scale regulatory networks, from healthy and pathological organs, such as those affected by diabetes or Alzheimer's disease. The researchers were able to pinpoint genes relevant to organ function and potential drivers of diseases. They are publishing their results in the current issue of the Genome Biology journal.

"Our previously developed single-cell transcriptomic tools were very useful to discover unknown cell types", says Giovanni Iacono, senior postdoc researcher at the CNAG-CRG and first author of the study. "Those tools allowed us to describe new types and subtypes of cells, with their unique biological roles and hierarchical relationships", he adds.

Up to now, single-cell analysis had been used to understand cell types and their function within tissue. "Large-scale consortia like the Human Cell Atlas Project generate single-cell maps of entire organisms and sophisticated analysis strategies are required to transform big data into disruptive biological and clinical insights", says Holger Heyn, team leader of the Single Cell Genomics Group at the CNAG-CRG and senior author of the article.

The tool that this scientific team has now developed will enable them to go one step further, to see how genes interact to form tissues. "Our tool tries to address precisely the regulatory process that controls the morphology and functions of a cell", highlights Iacono.

The tool is based on the Graph theory, an abstract mathematical model in which there are nodes connected by edges. Once you have a graph, a structure, you can measure the importance of each node for the network. In this case, each node was a gene and importance was defined as the function of that gene being key for the biological system under study.

CNAG-CRG researchers processed datasets from ten-thousands of cells to infer the regulatory networks that drive cell phenotype formation and their respective functions. They applied their tool to study type 2 diabetes and Alzheimer's disease and were able to find the functional changes relevant to those diseases. Importantly, this opens the door to finding new drug targets.

"The network analysis we have developed goes beyond currently applied approaches to provide deep insights into how gene activities shape tissues and organs. This is critical to understand diseases in which these networks are disrupted and find their 'Achilles heels' for effective treatments." says Heyn.

Potentially, the tool can be applied to any disease, from Alzheimer's to chronic lymphocytic leukaemia. "We will apply our tool to propose new target genes for many diseases that can then be validated in further studies." Iacono states.
-end-


Center for Genomic Regulation

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.