Nav: Home

New core-shell catalyst for ethanol fuel cells

June 07, 2019

UPTON, NY--Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources. The catalyst, described in the Journal of the American Chemical Society, steers the electro-oxidation of ethanol down an ideal chemical pathway that releases the liquid fuel's full potential of stored energy.

"This catalyst is a game changer that will enable the use of ethanol fuel cells as a promising high-energy-density source of 'off-the-grid' electrical power," said Jia Wang, the Brookhaven Lab chemist who led the work. One particularly promising application: liquid fuel-cell-powered drones.

"Ethanol fuel cells are lightweight compared to batteries. They would provide sufficient power for operating drones using a liquid fuel that's easy to refill between flights--even in remote locations," Wang noted.

Much of ethanol's potential power is locked up in the carbon-carbon bonds that form the backbone of the molecule. The catalyst developed by Wang's group reveals that breaking those bonds at the right time is the key to unlocking that stored energy.

"Electro-oxidation of ethanol can produce 12 electrons per molecule," Wang said. "But the reaction can progress by following many different pathways."

Most of these pathways result in incomplete oxidation: The catalysts leave carbon-carbon bonds intact, releasing fewer electrons. They also strip off hydrogen atoms early in the process, exposing carbon atoms to the formation of carbon monoxide, which "poisons" the catalysts' ability to function over time.

"The 12-electron full oxidation of ethanol requires breaking the carbon-carbon bond at the beginning of the process, while hydrogen atoms are still attached, because the hydrogen protects the carbon and prevents the formation of carbon monoxide," Wang said. Then, multiple steps of dehydrogenation and oxidation are needed to complete the process.

The new catalyst--which combines reactive elements in a unique core-shell structure that Brookhaven scientists have been exploring for a range of catalytic reactions--speeds up all of these steps.

To make the catalyst, Jingyi Chen of the University of Arkansas, who was a visiting scientist at Brookhaven during part of this project, developed a synthesis method to co-deposit platinum and iridium on gold nanoparticles. The platinum and iridium form "monoatomic islands" across the surface of the gold nanoparticles. That arrangement, Chen noted, is the key that accounts for the catalyst's outstanding performance.

"The gold nanoparticle cores induce tensile strain in the platinum-iridium monoatomic islands, which increases those elements' ability to cleave the carbon-carbon bonds, and then strip away its hydrogen atoms," she said.

Zhixiu Liang, a Stony Brook University graduate student and the first author of the paper, performed studies in Wang's lab to understand how the catalyst achieves its record-high energy conversion efficiency. He used "in situ infrared reflection-absorption spectroscopy" to identify the reaction intermediates and products, comparing those produced by the new catalyst with reactions using a gold-core/platinum-shell catalyst and also a platinum-iridium alloy catalyst.

"By measuring the spectra produced when the infrared light is absorbed at different steps in the reaction, this method allows us to track, at each step, what species have been formed and how much of each product," Liang said. "The spectra revealed that the new catalyst steers ethanol toward the 12-electron full oxidation pathway, releasing the fuel's full potential of stored energy."

The next step, Wang noted, is to engineer devices that incorporate the new catalyst.

The mechanistic details revealed by this study may also help guide the rational design of future multicomponent catalysts for other applications.
-end-
In addition to the details described here, the scientists used the Inner Shell Spectroscopy (ISS) beamline at the National Synchrotron Light Source II (NSLS-II)--a DOE Office of Science User Facility--to characterize the relative amounts of each element in the catalyst samples. The paper's additional co-authors are: Liang Song and Radoslav R. Adzic of Brookhaven Lab's Chemistry Division, Shiqing Deng and Yimei Zhu of the Lab's Condensed Matter Physics and Materials Science Division, and Eli Stavitski of NSLS-II.

This work was funded by the U.S. Department of Energy's Office of Science and the National Science Foundation.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: "Direct 12-Electron Oxidation of Ethanol on a Ternary Au(core)-PtIr(shell) Electrocatalyst"

An electronic version of this news release with related graphics

Media Contacts: Contact: Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174

DOE/Brookhaven National Laboratory

Related Ethanol Articles:

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.
Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.
Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.
Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.
Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.
New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.
Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.
Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.
'Dancing' holes in droplets submerged in water-ethanol mixtures
Researchers from Tokyo Metropolitan University have observed the formation of holes that move by themselves in droplets of ionic liquids (IL) sitting inside water-ethanol mixtures.
Tiny particles increase in air with ethanol-to-gasoline switch
The concentration of ultrafine particles less than 50 nanometers in diameter rose by one-third in the air of São Paulo, Brazil, when higher ethanol prices induced drivers to switch from ethanol to gasoline, according to a new study by a Northwestern University chemist, a National University of Singapore economist and two University of São Paulo physicists.
More Ethanol News and Ethanol Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.