Proof of sandwiched graphene-membrane superstructure opens up a membrane-specific drug delivery mode

June 07, 2019

Researchers from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences and Tsinghua University (THU) proved a sandwiched superstructure for graphene oxide (GO) that transport inside cell membranes for the first time.

The discovery, published in Science Advances, opens up a membrane-specific drug delivery mode, which could significantly improve cytotoxicity effects over traditional drug carriers.

The transport of nanoparticles at bio-nano interfaces is essential for cellular responses and biomedical applications. How two-dimensional nanomaterials interact or diffuse inside the cell membrane is unknown, thus hindering their applications in the biomedical area.

"The sandwiched graphene membrane is a long-simulated superstructure but an unproved issue in vitro. We are excited to provide substantial experimental evidence and open an avenue for novel membrane-specific drug delivery," said WEI Wei, a professor from the State Key Laboratory of Biochemical Engineering of IPE.

The formation process of sandwiched GO was visualized in a fully hydrated/native state, and the significant influence on cell roughness, cell fluidity and membrane rigidity was also revealed.

Furthermore, the sandwiched GO induced greater drug entry and quicker diffusion time inside the membrane lipid layer, thus outperforming a typical liposome carrier in anti-cancer efficacy. This feature is also extremely beneficial when delivering vaccine adjuvants (e.g., membrane receptor ligands) for enhanced immune effect, according to WEI.

All the cell interactions, diffusion dynamics and the enhanced efficiency of membrane-specific drug delivery of sandwiched GO were simulated by Prof. YAN Litang from THU.

"It is a very nice study of graphene-membrane superstructures. It discloses different transport regimes, the presence of pores and a number of other potentially interesting features related to these systems," said peer reviewers from Science Advances. "Moreover, they demonstrate the applicability of GOs for drug delivery. Overall, the paper is very timely and tells a good story."

The GO-based sandwiched superstructure offers immense design capabilities that may enable a considerable number of applications for these emerging nanomaterials in the cutting-edge fields of biological and medical science.
-end-


Chinese Academy of Sciences Headquarters

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.