AI tool helps radiologists detect brain aneurysms

June 07, 2019

Doctors could soon get some help from an artificial intelligence tool when diagnosing brain aneurysms - bulges in blood vessels in the brain that can leak or burst open, potentially leading to stroke, brain damage or death.

The AI tool, developed by researchers at Stanford University and detailed in a paper published June 7 in JAMA Network Open, highlights areas of a brain scan that are likely to contain an aneurysm.

"There's been a lot of concern about how machine learning will actually work within the medical field," said Allison Park, a Stanford graduate student in statistics and co-lead author of the paper. "This research is an example of how humans stay involved in the diagnostic process, aided by an artificial intelligence tool."

This tool, which is built around an algorithm called HeadXNet, improved clinicians' ability to correctly identify aneurysms at a level equivalent to finding six more aneurysms in 100 scans that contain aneurysms. It also improved consensus among the interpreting clinicians. While the success of HeadXNet in these experiments is promising, the team of researchers - who have expertise in machine learning, radiology and neurosurgery - cautions that further investigation is needed to evaluate generalizability of the AI tool prior to real-time clinical deployment given differences in scanner hardware and imaging protocols across different hospital centers. The researchers plan to address such problems through multi-center collaboration.

Augmented expertise

Combing brain scans for signs of an aneurysm can mean scrolling through hundreds of images. Aneurysms come in many sizes and shapes and balloon out at tricky angles - some register as no more than a blip within the movie-like succession of images.

"Search for an aneurysm is one of the most labor-intensive and critical tasks radiologists undertake," said Kristen Yeom, associate professor of radiology and co-senior author of the paper. "Given inherent challenges of complex neurovascular anatomy and potential fatal outcome of a missed aneurysm, it prompted me to apply advances in computer science and vision to neuroimaging."

Yeom brought the idea to the AI for Healthcare Bootcamp run by Stanford's Machine Learning Group, which is led by Andrew Ng, adjunct professor of computer science and co-senior author of the paper. The central challenge was creating an artificial intelligence tool that could accurately process these large stacks of 3D images and complement clinical diagnostic practice.

To train their algorithm, Yeom worked with Park and Christopher Chute, a graduate student in computer science, and outlined clinically significant aneurysms detectable on 611 computerized tomography (CT) angiogram head scans.

"We labelled, by hand, every voxel - the 3D equivalent to a pixel - with whether or not it was part of an aneurysm," said Chute, who is also co-lead author of the paper. "Building the training data was a pretty grueling task and there were a lot of data."

Following the training, the algorithm decides for each voxel of a scan whether there is an aneurysm present. The end result of the HeadXNet tool is the algorithm's conclusions overlaid as a semi-transparent highlight on top of the scan. This representation of the algorithm's decision makes it easy for the clinicians to still see what the scans look like without HeadXNet's input.

"We were interested how these scans with AI-added overlays would improve the performance of clinicians," said Pranav Rajpurkar, a graduate student in computer science and co-lead author of the paper. "Rather than just having the algorithm say that a scan contained an aneurysm, we were able to bring the exact locations of the aneurysms to the clinician's attention."

Eight clinicians tested HeadXNet by evaluating a set of 115 brain scans for aneurysm, once with the help of HeadXNet and once without. With the tool, the clinicians correctly identified more aneurysms, and therefore reduced the "miss" rate, and the clinicians were more likely to agree with one another. HeadXNet did not influence how long it took the clinicians to decide on a diagnosis or their ability to correctly identify scans without aneurysms - a guard against telling someone they have an aneurysm when they don't.

To other tasks and institutions

The machine learning methods at the heart of HeadXNet could likely be trained to identify other diseases inside and outside the brain. For example, Yeom imagines a future version could focus on speeding up identifying aneurysms after they have burst, saving precious time in an urgent situation. But a considerable hurdle remains in integrating any artificial intelligence medical tools with daily clinical workflow in radiology across hospitals.

Current scan viewers aren't designed to work with deep learning assistance, so the researchers had to custom-build tools to integrate HeadXNet within scan viewers. Similarly, variations in real-world data - as opposed to the data on which the algorithm is tested and trained - could reduce model performance. If the algorithm processes data from different kinds of scanners or imaging protocols, or a patient population that wasn't part of its original training, it might not work as expected.

"Because of these issues, I think deployment will come faster not with pure AI automation, but instead with AI and radiologists collaborating," said Ng. "We still have technical and non-technical work to do, but we as a community will get there and AI-radiologist collaboration is the most promising path."
-end-
Additional Stanford co-authors are Joe Lou, undergraduate in computer science; Robyn Ball, senior biostatistician at the Quantitative Sciences Unit (also affiliated with Roam Analytics); graduate students Katie Shpanskaya, Rashad Jabarkheel, Lily H. Kim and Emily McKenna; radiology residents Joe Tseng and Jason Ni; Fidaa Wishah, clinical instructor of radiology; Fred Wittber, diagnostic radiology fellow; David S. Hong, assistant professor of psychiatry and behavioral sciences; Thomas J. Wilson, clinical assistant professor of neurosurgery; Safwan Halabi, clinical associate professor of radiology; Sanjay Basu, assistant professor of medicine; Bhavik N. Patel, assistant professor of radiology; and Matthew P. Lungren, assistant professor of radiology.

Hong and Yeom are also members of Stanford Bio-X, the Stanford Maternal and Child Health Research Institute and the Wu Tsai Neurosciences Institute. Patel is also a member of Stanford Bio-X and the Stanford Cancer Institute. Lungren is a member of Stanford Bio-X, the Stanford Maternal and Child Health Research Institute and the Stanford Cancer Institute.

To read all stories about Stanford science, subscribe to the biweekly Stanford Science Digest.

Stanford University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.