New gene therapy tool successfully treats mice with hemophilia A

June 08, 2002

(Embargoed) CHAPEL HILL -- Scientists at the University of North Carolina have successfully treated mice with hemophilia A using a new approach to gene therapy - RNA trans-splicing. The experimental procedure repairs a mutated section of the gene responsible for hemophilia A, a hereditary bleeding disorder.

Dr. Hengjun Chao, a research assistant professor at the UNC School of Medicine, Gene Therapy Center will present the new research Saturday June 8 in Boston at the Presidential Symposium of the American Society of Gene Therapy Annual Meeting.

Hemophilia A is a sex-linked congenital disease, occurring in one out of 5,000 to 10,000 live males in all populations and is caused by a defect in coagulation factor VIII. The mutation renders the factor VIII gene non-functional resulting in recurrent, non-predictable, spontaneous bleeding into major joints and soft tissues. Currently, the disorder is treated with injections of factor VIII protein in response to bleeding incidents. Conventional approaches to gene therapy have not proven successful against hemophilia A, partially due to difficulties involved in packaging and delivering the large factor VIII gene.

This new study in mice with hemophilia A was conducted in collaboration with scientists from Intronn Inc., Rockville, Maryland, where RNA trans-splicing was pioneered. A "pre-trans-splicing molecule" (PTM) was injected into some of the mice. The molecule, or "cassette," is designed to produce RNA that binds and splices onto the existing faulty RNA, correcting it. The corrected RNA then encodes for the normal factor VIII protein.

"Preliminary data using the hemophilia A mice is very encouraging," said Dr. Hengjun Chao, "After injecting hemophilia A mice with the PTM cassette, factor VIII levels in the blood rose from lower than 1% to a maximum of 20 % of normal factor VIII activity. These levels of activity corrected the bleeding tendency of the hemophilia A mice, thus protecting the mice from a trauma challenge, which is usually lethal to untreated hemophilia A mice.

"If the technology is proven effective in humans, it would provide a more permanent treatment for hemophilia A."

According to Dr. Christopher Walsh, Assistant Professor of Medicine at UNC and principal investigator of the study, RNA trans-splicing offers several advantages over conventional DNA gene therapy. "Among these, only a mutated segment of the gene is repaired rather than the entire gene. Also, very large pieces of DNA cannot be effectively packaged and delivered using conventional DNA viral vector therapy. This new gene therapy tool will help treat hemophilia A as well as a host of other genetic diseases such as cystic fibrosis, sickle cell anemia, muscular dystrophy and some forms of cancer."
-end-
Note: Contact Chao at (919) 966-9117, hchao@med.unc.edu. From June 6-9, contact Chao at the Boston Marriott Copley Place, 617-236-5800.

School of Medicine contact: Les Lang at (919) 843-9687, llang@med.unc.edu

By ROBIN L. ARNETTE
UNC School of Medicine

University of North Carolina Health Care

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.