Bacteria have their own immune system protecting against outside DNA

June 08, 2006

Bacteria like Salmonella have a complicated immune system that helps them recognize and isolate foreign DNA trying to invade their cell membrane, according to a University of Washington-led study in the June 8 issue of Science Express. The research, which also included scientists at the Sidney Kimmel Cancer Center in San Diego, could have major implications for understanding the evolution of disease-causing bacteria. The findings may also impact the biotech industry, where bacteria are used to produce recombinant human proteins for medical treatments and research.

A group of researchers led by Dr. Ferric Fang, professor of laboratory medicine and microbiology at the UW School of Medicine, were interested in learning how bacteria respond to genetic information coming from outside sources. Just as immune cells recognize and attack foreign invaders in the human body to protect against harmful infections, single-cell organisms have a protein called H-NS that recognizes foreign DNA and prevents it from becoming active, the researchers discovered.

But bacteria can also benefit from foreign DNA. When Salmonella is infecting an animal or person, for instance, many proteins the bacteria need to cause disease are encoded by DNA acquired from other bacteria. The researchers found that when the bacteria is infecting a host, other molecules can compete with the H-NS protein, allowing the disease-causing genes to be expressed. When the bacteria are in the environment, H-NS turns these genes off to avoid detrimental consequences if all the disease-causing genes were to be expressed at once.

These findings give scientists new insight into how bacteria can protect themselves from an invasion by foreign DNA, yet still take in genetic information from diverse sources that makes them more virulent.

"By harnessing foreign DNA, bacteria that cause typhoid, dysentery, cholera and plague have evolved from harmless organisms into feared pathogens," explained Dr. William Navarre, a senior fellow at the UW and primary author of the study. "This research gives us an explanation of how pathogenic bacteria have evolved over millions of years."

The researchers also learned that the H-NS protein is able to recognize foreign DNA on the basis of its increased content of adenine and thymine, the building blocks of DNA.

"It has been a great mystery why disease-causing genes of bacteria usually contain more adenine and thymine," said Michael McClelland, professor and director of the Molecular Biology Program at the Kimmel Cancer Center. "Now we know this is because such sequences are easier to recruit and regulate than other DNA."

This research could also have major implications for the biotech industry, which uses bacteria for the production of recombinant proteins for medicine and research. These proteins, such as insulin or human growth hormone, are created when a piece of human DNA corresponding to that protein is introduced into bacteria. The bacteria then reproduce many times over, creating more of the protein each time they reproduce. The proteins are purified out from the bacteria, leaving behind only the useful protein. However, in that process, the yield of some human proteins produced in bacteria can be low. The new research indicates that the H-NS "immune system" may be responsible for interfering with the expression of human genes in bacteria.

"Having a better understanding of this system could help the biotech industry make recombinant proteins more efficiently," said Fang. "More foreign protein can be produced in bacteria that don't have the H-NS molecule."
-end-


University of Washington

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.