New molecule enables quick drug monitoring

June 08, 2014

Monitoring the drug concentration in patients is critical for effective treatment, especially in cases of cancer, heart disease, epilepsy and immunosuppression after organ transplants. However, current methods are expensive, time-consuming, and require dedicated personnel and infrastructure away from the patient. Publishing in Nature Chemical Biology, scientists at EPFL introduce novel light-emitting sensor proteins that can quickly and simply show how much drug is in a patient's bloodstream by changing the color of their light. The method is so simple that it could be used by patients themselves.

Effective drug treatment relies on balancing the efficiency and toxicity of the drug, which lies at the core of personalized medicine. But as each patient differs from another, this requires constant monitoring in order to best customize drug dosage and prevent side-effects or even poisoning. Current drug-monitoring methods rely on techniques that require specialized personnel and expensive devices, and have to be carried out in diagnostic labs away from the patient's point-of-care. Developing quick, low-cost methods could improve drug therapy at the patient's bedside or home, especially in areas with poor medical infrastructure.

A new molecule for monitoring drug concentration

Kai Johnsson's team at EPFL has developed a novel biosensor molecule that can quickly and accurately measure drug concentration in a patient's system without requiring anything more complicated than a regular digital camera. The molecule is the result of innovative protein engineering and organic chemistry, and has been shown to work on a range of common drugs for cancer, epilepsy and immunosuppression.

The sensor molecule works by binding the drug circulating in the patient's bloodstream and changing color accordingly. The molecule itself is made up of four components. One component is a receptor protein, which can bind the molecules of the target drug. The second component is a small molecule similar to the target drug, which can bind the drug receptor. The third component is a light-producing enzyme called luciferase, and the fourth is a fluorophore molecule that can modify the color of the luciferase's light when it comes close to it.

When there is no drug around, the receptor and the drug-like molecule bind together. This brings the fluorophore close to the luciferase enzyme, and the system produces a red light. But in the presence of drug, e.g. in the blood of a patient, the drug molecules bind the receptor more efficiently and therefore "push" the drug-like molecule off it. The whole sensor molecule system opens up, taking the fluorophore away from the luciferase. As a result, the emitted light turns gradually from red to blue in proportion to the concentration of the drug.

The doctor or the patient can record the signal very easily by putting a drop of sample, e.g. blood, onto a piece of paper, placing it in a dark box and photographing it with a conventional camera. The photograph can then be analyzed by color-measuring software to generate an average measurement. By comparing this measurement to a standard drug-concentration curve, it is easy to calculate the drug concentration in a sample or a patient's bloodstream. The sensor molecule can be used with virtually any kind of drug, as it simply requires changing the receptor protein on one end and the drug-like molecule on the other.

Successfully tested against anti-cancer and other drugs

The EPFL scientists have called their new class of biosensors "LUCiferase-based Indicators of Drugs", or LUCIDs. To test their versatility, they developed LUCIDs against six commercially available drugs, including three immunosuppressants, one anti-epileptic, one anti-arrhythmic, and one anti-cancer drug. The drugs were successfully tested in vitro, and the anti-cancer one was also tested against actual human blood-plasma samples. The signal from all six LUCIDs was shown to be accurate and very stable, lasting for more than 10 minutes.

"This system is a cheap, effective solution for customizing drug dosage in patients across a whole array of diseases", says Rudolf Griss, one of the authors. The successful achievement has encouraged him and co-author Alberto Schena to develop a start-up company in order to streamline and commercialize the innovation. "We envision a simple, hand-held detector where the patient can take a pin-prick of blood and can have an immediate reading of free drug concentration in their system - much like diabetics do now for blood glucose."
This work involves a collaboration between EPFL's Laboratory of Protein Engineering and the National Centre of Competence in Research (NCCR) in Chemical Biology with the Clinical Chemistry Laboratory (Service of Biomedicine) at the Centre Hospitalier Universitaire Vaudois (CHUV) who donated the human blood plasma samples, and the University of Washington's Department of Biochemistry.


Griss R, Schena A, Reymond L, Patiny L, Werner D, Tinberg CE, Baker D, Johnsson K. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nature Chemical Biology DOI: 10.1038/nchembio.1554

Ecole Polytechnique Fédérale de Lausanne

Related Drugs Articles from Brightsurf:

The danger of Z-drugs for dementia patients
Strong sleeping pills known as 'Z-drugs' are linked with an increased risk of falls, fractures and stroke among people with dementia, according to new research.

Wallflowers could lead to new drugs
Plant-derived chemicals called cardenolides - like digitoxin - have long been used to treat heart disease, and have shown potential as cancer therapies.

Bristol pioneers use of VR for designing new drugs
Researchers at the University of Bristol are pioneering the use of virtual reality (VR) as a tool to design the next generation of drug treatments.

Towards better anti-cancer drugs
The Bayreuth biochemist Dr. Claus-D. Kuhn and his research team have deciphered how the important human oncogene CDK8 is activated in cells of healthy individuals.

Separating drugs with MagLev
The composition of suspicious powders that may contain illicit drugs can be analyzed using a quick and simple method called magneto-Archimedes levitation (MagLev), according to a new study published in the journal Angewandte Chemie.

People are more likely to try drugs for the first time during the summer
American teenagers and adults are more likely to try illegal or recreational drugs for the first time in the summer, a new study shows.

Drugs used to enhance sexual experiences, especially in UK
Combining drugs with sex is common regardless of gender or sexual orientation, reveals new research by UCL and the Global Drug Survey into global trends of substance-linked sex.

Promising new drugs for old pathogen Mtb
UConn researchers are targeting a metabolic pathway, the dihydrofolate reductase pathway, crucial for amino acid synthesis to treat TB infections.

Can psychedelic drugs heal?
Many people think of psychedelics as relics from the hippie generation or something taken by ravers and music festival-goers, but they may one day be used to treat disorders ranging from social anxiety to depression, according to research presented at the annual convention of the American Psychological Association.

New uses for existing antiviral drugs
Broad-spectrum antiviral drugs work against a range of viral diseases, but developing them can be costly and time consuming.

Read More: Drugs News and Drugs Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to