New technique expands pool of gene-corrected liver cells

June 08, 2016

Sean Nygaard and colleagues have developed a new technique that may help to overcome one of the largest hurdles in gene therapy--the ability to generate a large pool of gene-corrected cells that would be effective in repairing or correcting injury and disease. What's more, in their method, the genetically corrected cells can repopulate in vivo. To date, efforts to modify and deliver genetically modified cells to treat various disorders have required the delivery of thousands of cells, many of which don't survive. This has limited the application of gene therapy, along with other concerns in the field, like the safety of the delivery vector. Here, the researchers delivered a therapeutic gene along with a short hairpin RNA (shRNA) into liver cells in mice. The shRNA knocked down the level of a key enzyme, making the cells more resistant to a toxic drug called CEHPOBA. By treating a population of liver cells with the drug, the researchers ensured that only the gene-corrected cells went on to survive and repopulate the liver, producing higher than normal levels of the therapeutic transgene--in this case, a gene that prevents liver disease in mice. This universal method of selection could be used to support cell-based treatments for neonatal metabolic liver diseases and genetic disorders, such as hemophilia B, say Nygaard and colleagues. However, the technique could also be used to expand a therapeutic population of gene-corrected cells in many tissues that proliferate after injury, such as cells found in bone marrow, skin, or the intestine.
-end-


American Association for the Advancement of Science

Related Gene Therapy Articles from Brightsurf:

Risk of AAV mobilization in gene therapy
New data highlight safety concerns for the replication of recombinant adeno-associated viral (rAAV) vectors commonly used in gene therapy.

Discovery challenges the foundations of gene therapy
An article published today in Science Translational Medicine by scientists from Children's Medical Research Institute has challenged one of the foundations of the gene therapy field and will help to improve strategies for treating serious genetic disorders of the liver.

Gene therapy: Novel targets come into view
Retinitis pigmentosa is the most prevalent form of congenital blindness.

Gene therapy targets inner retina to combat blindness
Batten disease is a group of fatal, inherited lysosomal storage disorders that predominantly affect children.

New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.

New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.

Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.

Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.

Read More: Gene Therapy News and Gene Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.