Tunable lasers to improve infrared spectroscopy

June 08, 2016

A new development from Northwestern University's Manijeh Razeghi could be another tool for protecting our borders.

Supported by the Department of Homeland Security, Razeghi's lab has created a new, broad-band tunable infrared laser that has implications for the detection of drugs and explosives.

The robust, all solid-state laser can be rapidly tuned to emit in the wavelength range that encompasses the critical "fingerprint" region where most molecular features are absorbed and identified through infrared sensing. In experiments, the laser has demonstrated its ability to capture the unique spectral fingerprint of gases.

"The only moving part in the entire system is the fan used to keep the laser cool," said Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering. "This is a major advantage over existing systems that require mechanical parts to achieve tuning, and we expect to demonstrate remarkable stability."

The initial, patent-pending results have been published in the June 8 issue of Scientific Reports. The research and development of the laser system is the culmination of more than 18 years of quantum cascade laser development work at Northwestern's Center for Quantum Devices.

The laser has been integrated into a system that contains all of the laser driver electronics and tuning software necessary for integration into a spectroscopy system. It produces a stable, single-aperture spot less than 3 millimeters in diameter that is suitable for standoff detection and is capable of linear or random access scanning with stabilization times of less than 1 millisecond per wavelength.

This work was supported by the Department of Homeland Security Science and Technology Directorate, National Science Foundation, Naval Air Systems Command, DARPA, and NASA.
-end-


Northwestern University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.