Nav: Home

Making vessels leaky on demand could aid drug delivery

June 08, 2017

HOUSTON - (May 8, 2017) - The endothelial cells that line blood vessels are packed tightly to keep blood inside and flowing, but scientists at Rice University and their colleagues have discovered it may be possible to selectively open gaps in those barriers just enough to let large molecules through -- and then close them again.

Rice bioengineer Gang Bao and collaborators at Emory University and the Georgia Institute of Technology reported using magnets to help iron-oxide nanoparticles invade endothelial cells both in the lab and in vivo. Then they use the same magnets to make vessels temporarily "leaky."

This permeability would allow large-molecule drugs to reach target tissues, Bao said. Strong magnets may be able to lead nanoparticle-infused stem cells or drug-laden nanoparticles themselves to targeted areas, even in deep tissues like organs that current therapies cannot reach, he said.

The study appears today in Nature Communications.

"For many diseases, systemic delivery through the blood stream is the only way to deliver molecules to the site," Bao said. "Small molecules can penetrate the blood vessel and get into the diseased cells, but large molecules like proteins or drug-loaded nanoparticles cannot pass the endothelium effectively unless it is leaky."

Blood vessels in cancerous tumors typically have holes in the endothelial barrier, but they don't close on demand like Bao and his team hope to make them do.

Along with drug molecules, Bao wants to use magnets to deliver nanoparticle-infused stem cells to injured tissues. "Unless you can do direct injection of stem cells, let's say into the heart, you have to do systemic delivery and you have no control over where they go.

"Our initial idea was to deliver magnetic nanoparticles into stem cells and then use a magnet to attract the stem cells to a particular location," he said. "In doing so, we also discovered that by applying a magnetic field, we could generate changes in the cell's skeletal structure in terms of the actin filament structures."

These structural elements give cells their shape and help keep neighboring cells tightly compacted. "We thought if we could alter the cell-cell junction by using magnetic force, there was a possibility that we could engineer the leakiness of the vessel," Bao said.

The lab created a microfluidic flow chamber that mimicked the vascular system and lined its tubes with real endothelial cells. Experiments proved their hypothesis: When a magnetic field was applied to the nanoparticle-infused cells, the gaps opened. Relaxing the force allowed most gaps to close after 12 hours.

Microscopic images showed that fluorescent-tagged nanoparticles were evenly distributed inside the endothelial channel when a magnetic field was not applied. When it was, the particles redistributed, and the force they applied distorted the cytoskeleton.

In some images, actin filaments that help give a cell its shape were observed lining up with the force. "It's a pretty dramatic change," Bao said. "Once you apply the force, given enough time, the structure of the cells changes. That leads to the opening of the cell-cell junction."

Bao said the magnetic force also generates a biological signal that alters the cytoskeletal structure. "It also contributes to the leakiness," he said. "We're still trying to understand what kind of signal we give to cells and how the individual cells are responding."

While there are methods to facilitate two types of transport across the endothelial barrier - paracellular (between cells) and transcellular (through cells) - neither has the ability to target specific areas of the body. Bao said his team's approach offers a solution.

He said his group is part of an ongoing collaborative project on knee repair with the lab of Dr. Johnny Huard, a professor of orthopedic surgery at the University of Texas Health Science Center at Houston. "The problem is how to accumulate therapeutic stem cells around the knee and keep them there," Bao said. "After injecting the nanoparticle-infused cells, we want to put an array of magnets around the knee to attract them.

"But if you want to treat the heart or liver, you'd need a pretty large device to have the required magnetic field," he said. "We don't have that yet. To drive this to a clinical setting will be a challenge."
-end-
Sheng Tong, an associate research professor at Rice, and Yongzhi Qiu, a research associate at Emory University and Georgia Tech, are lead authors of the study. Co-authors are postdoctoral researcher Linlin Zhang and research technician Lin Hong of Rice; researcher Yumiko Sakurai and postdoctoral fellow David Myers of Emory and Georgia Tech; and Wilbur Lam, an assistant professor of hematology and oncology at Emory and of biomedical engineering at Georgia Tech.

The National Heart, Lung and Blood Institute, the National Institutes of Health and the Cancer Prevention and Research Institute of Texas supported the research.

Read the abstract at https://www.nature.com/articles/ncomms15594

This news release can be found online at http://news.rice.edu/2017/06/08/making-vessels-leaky-on-demand-could-aid-drug-delivery/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Laboratory of Biomolecular Engineering and Nanomedicine (Bao Group): http://bao.rice.edu

Lam Lab: http://lamlab.gatech.edu/index.html

Rice Department of Bioengineering: http://bioe.rice.edu

Images for download:

http://news.rice.edu/files/2017/05/0515_MAGNETIC-1-WEB-2jd1wm4.jpg

Fluorescent iron-oxide nanoparticles glow in endothelial cells in an experiment at Rice University. At left, the nanoparticles are evenly distributed among the microtubules that help give the cells their shape. At right, after a magnetic field is applied, the nanoparticles are pulled toward one end of the cells and change their shapes. The researchers believe this offers a way to make the endothelial barrier "leaky" enough to allow drug molecules to pass through to reach tissues. (Credit: Laboratory of Biomolecular Engineering and Nanomedicine/Rice University)

http://news.rice.edu/files/2017/05/0515_MAGNETIC-2-WEB-28oo87y.jpg

Under the influence of a magnet, nanoparticles realign actin filaments in endothelial cells. Rice University researchers suspect such realignment can disrupt the junctions between endothelial cells and increase vascular permeability. (Credit: Laboratory of Biomolecular Engineering and Nanomedicine/Rice University)

http://news.rice.edu/files/2017/05/0515_MAGNETIC-3-WEB-2eisjbn.jpg

Rice University researchers prepare a batch of iron-oxide nanoparticles for experiments. They have discovered the particles, along with strong magnets, can be used to open gaps for drug delivery between the endothelial cells that line blood vessels. From left, Gang Bao, Sheng Tong and Linlin Zhang. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/files/2017/05/0515_MAGNETIC-4-WEB-24hzgo4.jpg

Rice University researchers prepare nanoparticles between 16 and 33 nanometers in diameter to target endothelial cells. Once inside the cells, they can be manipulated with magnets to open gaps in endothelial cell-cell junctions and allow for controlled drug delivery. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/files/2017/05/0515_MAGNETIC-5-WEB-20y74h4.jpg

Scientists are using magnets and nanoparticles to open "leaks" in blood vessels on demand. The technique could help in the delivery of drugs to targeted areas in the body, including deep tissues and organs. From left, Rice researchers Linlin Zhang, Gang Bao and Sheng Tong. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Rice University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...