Nav: Home

Organic compound found in early stages of star formation

June 08, 2017

Scientists seeking to understand the origins of life have found a new organic compound in the material from which a star like the Sun is forming.

Researchers from Queen Mary University of London (QMUL) are part of a team that have for the first time detected methyl isocyanate (or CH3NCO) in a solar-type protostar, the kind from which our Sun and the Solar System formed.

Methyl isocyanate (CH3NCO) is one of a family of prebiotic molecules, thought to be the precursors of more complex compounds, such as peptides and amino acids, associated with living organisms on Earth.

"Our findings indicate that the key ingredients for the origin of life could have been produced at an early stage of the Solar System," said co-author Dr David Quénard from QMUL's School of Physics and Astronomy.

The team used data from the ALMA telescope (Atacama Large Millimeter/submillimeter Array) in Chile to detect the compound in the warm, dense inner regions of the cocoon of dust and gas around very young stars in the multiple star system IRAS 16293-2422.

Using a new computer model jointly developed by QMUL and University College London (UCL), they were able to use the new observations to understand more about the chemistry in the proto-stellar material and the mechanisms by which this complex molecule is formed.

Earth and the other planets in our Solar System are formed from the material left over after the formation of the Sun. Studying solar-type protostars can therefore open a window to the past for astronomers, allowing them to observe similar conditions that led to the formation of our Solar System over 4.5 billion years ago.

Finding complex molecules such as methyl isocyanate in a solar-type protostar indicates that planets created around the star could begin their existence with a supply of the chemical ingredients needed to make some form of life.

Scientists believe that some basic prebiotic chemistry, involving molecules that form the building blocks of structures associated with life on Earth, could have developed in space. It is believed that molecules created in clouds of interstellar gas and dust during the early stages of star formation could be transferred to planets and smaller bodies (such as asteroids and comets) forming around stars.

Comets, for example, exhibit a wide variety of complex organic molecules that are also commonly detected in matter that lies between the star systems in a galaxy, referred to as the interstellar medium.

Co-author Dr Izaskun Jiménez-Serra from the School of Physics and Astronomy said: "Our results suggest that the chemical composition of comets may be inherited directly from the interstellar medium."
-end-
The results are published in the journal Monthly Notices of the Royal Astronomical Society.

Queen Mary University of London

Related Solar System Articles:

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
Tracking a solar eruption through the solar system
Ten spacecraft, from ESA's Venus Express to NASA's Voyager-2, felt the effect of a solar eruption as it washed through the solar system while three other satellites watched, providing a unique perspective on this space weather event.
More Solar System News and Solar System Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.