Nav: Home

From the somatic cell to the germ cell

June 08, 2017

An international scientific consortium including the Freiburg plant biologist Prof. Dr. Thomas Laux has discovered a regulatory pathway that turns plants' ordinary somatic cells into germ cells for sexual reproduction. The researchers recently published their findings in the scientific journal Science.

In contrast to humans and animals, plants do not set aside a specialized cell lineage (germline) for the future production of gametes during early embryogenesis. Instead, the germ cells of plants are established de novo from somatic cells in the floral reproductive organs, the stamens and carpels. To this end, the selected cells switch their cell division mode from mitosis, cell proliferation maintaining the chromosome number, to meiosis, the division that reduces the number of chromosomes and where genetic recombination occurs. Plants have therefore evolved strategies to enable somatic cells to switch to germline fate and to do so in the right place and at the right time.

Laux and colleagues have identified multiple genes in the model organism Arabidopsis thaliana that give the start signal for switching from mitose to meiose. The starting point for the findings presented in Science are mutants that create multiple germ cells instead of a singular one in each ovule. Key of the newly discovered pathway is the limitation of activity of the transcription factor WUSCHEL, which Laux's team had identified several years ago as an important regulator of pluripotent stem cells that are able to develop into every cell type in the organism. The involvement of WUSCHEL in creating germ cells is a discovery that provides molecular evidence for the longstanding hypothesis derived from paleobotanical studies that the reproductive ovules and the shoot meristem have evolved from the same precursor organ in ancient plants. The newly discovered regulatory mechanism shows how plants are able to limit switching to the germ cell program so that only a single germ cell emerges, while the surrounding cells take on other tasks.

Thomas Laux is professor at the Institute of Biology III and member of the excellence cluster BIOSS Centre for Biological Signalling Studies at the University of Freiburg.
-end-
Original publication:

Xin'Ai Zhao, Jonathan Bramsiepe, Matthias Van Durme, Shinichiro Komaki,Maria Ada Prusicki, Daisuke Maruyama, Joachim Forner, Anna Medzihradszky,Erik Wijnker, Hirofumi Harashima, You Lu, Anja Schmidt, Daniela Guthörl,Rosa Sahún Logroño, Yonsheng Guan, Gaetan Pochon, Ueli Grossniklaus, Thomas Laux,Tetsuya Higashiyama, Jan U. Lohmann, Moritz K. Nowack, Arp Schnittger (2017): RETINOBLASTOMA RELATED1mediates germline entryin Arabidopsis In: Science. DOI: 10.1126/science.aaf6532

Contact:

Institute of Biology III / BIOSS Centre for Biological Signalling Studies
University of Freiburg

University of Freiburg

Related Pluripotent Stem Cells Articles:

A new method for creating safer induced pluripotent stem cells
Induced pluripotent stem cells (IPSCs) hold great promise in regenerative medicine, personalized medicine and drug discovery.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
Boston University scientists turn human induced pluripotent stem cells into lung cells
Boston University scientists have announced two major findings that further our understanding of how stem cells become organs: the ability to grow and purify the earliest lung progenitors that emerge from human stem cells, and the ability to differentiate these cells into tiny 'bronchospheres' that model cystic fibrosis.
Findings: Induced pluripotent stem cells don't increase genetic mutations
Despite immense promise, adoption of induced pluripotent stem cells (iPSCs) in biomedical research and medicine has been slowed by concerns that these cells are prone to increased numbers of genetic mutations.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells
Researchers from the Institute for Stem Cell Research and Regenerative Medicine at the University Clinic of Düsseldorf have established an in vitro model system for investigating nonalcoholic fatty liver disease (NAFLD).
Non-healing tissue from diabetic foot ulcers reprogrammed as pluripotent stem cells
Researchers at Tufts University School of Dental Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts, led by Jonathan Garlick, have established for the first time that skin cells from diabetic foot ulcers can be reprogrammed to acquire properties of embryonic-like cells.
Study sets standards for evaluating pluripotent stem cell quality
As the promise of using regenerative stem cell therapies draws closer, a consortium of biomedical scientists reports about 30 percent of induced pluripotent stem cells they analyzed from 10 research institutions were genetically unstable and not safe for clinical use.

Related Pluripotent Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...