Nav: Home

Optical communication using solitons on a photonic chip

June 08, 2017

Optical solitons are special wave packages that propagate without changing their shape. They are ubiquitous in nature, and occur in Plasma Physics, water waves to biological systems. While solitons also exist in optical fiber, discovered at Bell labs in the 1980'ies, there technological use so far has been limited. While researchers studied their use for optical communication, eventually the approach was abandoned. Now, a collaboration of a research group at KIT's Institute of Photonics and Quantum Electronics (IPQ) and Institute of Microstructure Technology (IMT) with EPFL's Laboratory of Photonics and Quantum Measurements (LPQM) have shown that solitons may experience a comeback: Instead of using a train of soliton pulses in an optical fiber, they generated continuously circulating optical solitons in compact silicon nitride optical microresonators. These continuously circulating solitons lead to broadband optical frequency combs. Two such superimposed frequency combs enabled massive parallel data transmission on 179 wavelength channels at a data rate of more than 50 terabits per second - a record for frequency combs. The work is published in Nature.

Optical frequency combs, for which John Hall and Theodor W. Hänsch were awarded the Nobel Prize in Physics in 2005, consist of a multitude of neighboring spectral lines, which are aligned on a regular equidistant grid. Traditionally, frequency combs serve as high-precision optical references for measurement of frequencies. The invention of so-called Kerr frequency combs, which are characterized by large optical bandwidths and by line spacings that are optimal for communications, make frequency combs equally well suited for data transmission. Each individual spectral line can be used for transmitting a data signal.

In their experiment, the researchers from KIT and EPFL used optical silicon nitride micro-resonators on a photonic chip that can easily be integrated into compact communication systems. For the communications demonstration, two interleaved frequency combs were used to transmit data on 179 individual optical carriers, which completely cover the optical telecommunication C and L bands and allow a transmission of data rate of 55 terabits per second over a distance of 75 kilometers. "This is equivalent to more than five billion phone calls or more than two million HD TV channels. It is the highest data rate ever reached using a frequency comb source in chip format," explains Christian Koos, professor at KIT's IPQ and IMT and recipient of a Starting Independent Researcher Grant of the European Research Council (ERC) for his research on optical frequency combs.

The components have the potential to reduce the energy consumption of the light source in communication systems drastically. The basis of the researchers' work are solitons generated in low-loss optical silicon nitride micro-resonators. In these, an optical soliton state was generated for the first time by Kippenberg's lab at EPFL in 2014. "The soliton forms through nonlinear processes occurring due to the high intensity of the light field in the micro-resonator" explains Kippenberg. The microresonator is only pumped through a continuous-wave laser from which, by means of the soliton, hundreds of new equidistant laser lines are generated. The silicon nitride integrated photonic chips are grown and fabricated in the Center for MicroNanotechnology (CMi) at EPFL. Meanwhile, a startup from LPQM, LiGenTec SA, is also offering access to these photonic integrated circuits to interested academic and industrial research laboratories.

The work shows that microresonator soliton frequency comb sources can considerably increase the performance of wavelength division multiplexing (WDM) techniques in optical communications. WDM allows to transmit ultra-high data rates by using a multitude of independent data channels on a single optical waveguide. To this end, the information is encoded on laser light of different wavelengths. For coherent communications, microresonator soliton frequency comb sources can be used not only at the transmitter, but also at the receiver side of WDM systems. The comb sources dramatically increase scalability of the respective systems and enable highly parallel coherent data transmission with light. According to Christian Koos, this is an important step towards highly efficient chip-scale transceivers for future petabit networks.
This work was supported by the European Research Council (Starting Grant 'EnTeraPIC'), the European Union (project BigPipes), the Alfried Krupp von Bohlen und Halbach Foundation, the Karlsruhe School of Optics & Photonics (KSOP), and the Helmholtz International Research School for Teratronics (HIRST), the Erasmus Mundus Doctorate Program Europhotonics, the Deutsche Forschungsgemeinschaft (DFG), the European Space Agency, the US Air Force (Office of Scientific Research), the Swiss National Science Foundation (SNF), and the Defense Advanced Research Program Agency (DARPA) via the program Quantum Assisted Sensing and Readout(QuASAR).


Pablo Marin-Palomo, Juned N. Kemal, Maxim Karpov, Arne Kordts, Joerg Pfeifle, Martin H. P. Pfeiffer, Philipp Trocha, Stefan Wolf, Victor Brasch, Miles H. Anderson, Ralf Rosenberger, Kovendhan Vijayan, Wolfgang Freude, Tobias J. Kippenberg, Christian Koos. Microresonator solitons for massively parallel coherent optical communications. Nature 08 June 2017.

Ecole Polytechnique Fédérale de Lausanne

Related Optical Fiber Articles:

All-fiber optical wavelength converter
Wavelength conversion in all-fiber structure has extensive applications in new fiber-laser sources, signal processing, and multi-parameter sensors.
New design could make fiber communications more energy efficient
Researchers say a new discovery on a US Army project for optoelectronic devices could help make optical fiber communications more energy efficient.
Hollow-core fiber technology closes in on mainstream optical fiber
searchers from the Zepler Institute for Photonics and Nanoelectronics at the University of Southampton have demonstrated a new leap in hollow-core fibre performance, underlining the technology's potential to soon eclipse current optical fibres.
Long-distance fiber link poised to create powerful networks of optical clocks
An academic-industrial team in Japan has connected three laboratories in a 100-kilometer region with an optical telecommunications fiber network stable enough to remotely interrogate optical atomic clocks.
Looking outside the fiber: Researchers demonstrate new concept of optical fiber sensors
Researchers have demonstrated a new concept of optical fiber sensors that addresses a decades-long challenge: the distributed mapping of refractive index outside the cladding of standard fiber, where light does not reach.
Demonstration of world record transmission capacity over a 38-core 3-mode optical fiber
The National Institute of Information and Communications Technology, Sumitomo Electric Industries, Ltd. and Optoquest Co., Ltd. succeeded in experimental transmission at 10.66 Pb/s, achieving a spectral efficiency of 1158.7 bps/Hz.
With high fiber diets, more protein may mean more bloating
People who eat high fiber diets are more likely to experience bloating if their high fiber diet is protein-rich as compared to carbohydrate-rich, according to a study led by researchers at the Johns Hopkins Bloomberg School of Public Health.
A new twist on quantum communication in fiber
New research done at the University of the Witwatersrand in Johannesburg, South Africa, and Huazhang University of Science and Technology in Wuhan, China, has exciting implications for secure data transfer across optical fiber networks.
VTT developed an optical fiber made of cellulose
VTT researchers were able to transmit light in wood-based fibre.
New treatment for brain tumors uses electrospun fiber
University of Cincinnati professor Andrew Steckl, working with researchers from Johns Hopkins University, developed a new treatment for glioblastoma multiforme, an aggressive form of brain cancer.
More Optical Fiber News and Optical Fiber Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at