How the brain recognizes what the eye sees

June 08, 2017

LA JOLLA -- (June 8, 2017) If you think self-driving cars can't get here soon enough, you're not alone. But programming computers to recognize objects is very technically challenging, especially since scientists don't fully understand how our own brains do it.

Now, Salk Institute researchers have analyzed how neurons in a critical part of the brain, called V2, respond to natural scenes, providing a better understanding of vision processing. The work is described in Nature Communications on June 8, 2017.

"Understanding how the brain recognizes visual objects is important not only for the sake of vision, but also because it provides a window on how the brain works in general," says Tatyana Sharpee, an associate professor in Salk's Computational Neurobiology Laboratory and senior author of the paper. "Much of our brain is composed of a repeated computational unit, called a cortical column. In vision especially we can control inputs to the brain with exquisite precision, which makes it possible to quantitatively analyze how signals are transformed in the brain."

Although we often take the ability to see for granted, this ability derives from sets of complex mathematical transformations that we are not yet able to reproduce in a computer, according to Sharpee. In fact, more than a third of our brain is devoted exclusively to the task of parsing visual scenes.

Our visual perception starts in the eye with light and dark pixels. These signals are sent to the back of the brain to an area called V1 where they are transformed to correspond to edges in the visual scenes. Somehow, as a result of several subsequent transformations of this information, we then can recognize faces, cars and other objects and whether they are moving. How precisely this recognition happens is still a mystery, in part because neurons that encode objects respond in complicated ways.

Now, Sharpee and Ryan Rowekamp, a postdoctoral research associate in Sharpee's group, have developed a statistical method that takes these complex responses and describes them in interpretable ways, which could be used to help decode vision for computer-simulated vision. To develop their model, the team used publicly available data showing brain responses of primates watching movies of natural scenes (such as forest landscapes) from the Collaborative Research in Computational Neuroscience (CRCNS) database.

"We applied our new statistical technique in order to figure out what features in the movie were causing V2 neurons to change their responses," says Rowekamp. "Interestingly, we found that V2 neurons were responding to combinations of edges."

The team revealed that V2 neurons process visual information according to three principles: first, they combine edges that have similar orientations, increasing robustness of perception to small changes in the position of curves that form object boundaries. Second, if a neuron is activated by an edge of a particular orientation and position, then the orientation 90 degrees from that will be suppressive at the same location, a combination termed "cross-orientation suppression." These cross-oriented edge combinations are assembled in various ways to allow us to detect various visual shapes. The team found that cross-orientation was essential for accurate shape detection. The third principle is that relevant patterns are repeated in space in ways that can help perceive textured surfaces of trees or water and boundaries between them, as in impressionist paintings.

The researchers incorporated the three organizing principles into a model they named the Quadratic Convolutional model, which can be applied to other sets of experimental data. Visual processing is likely to be similar to how the brain processes smells, touch or sounds, the researchers say, so the work could elucidate processing of data from these areas as well.

"Models I had worked on before this weren't entirely compatible with the data, or weren't cleanly compatible," says Rowekamp. "So it was really satisfying when the idea of combining edge recognition with sensitivity to texture started to pay off as a tool to analyze and understand complex visual data."

But the more immediate application might be to improve object-recognition algorithms for self-driving cars or other robotic devices. "It seems that every time we add elements of computation that are found in the brain to computer-vision algorithms, their performance improves," says Sharpee.
-end-
The work was funded by the National Science Foundation.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.