Nav: Home

Simulations pinpoint atomic-level defects in solar cell nanostructures

June 08, 2017

To understand the nature of something extremely complex, you often have to study its smallest parts. In trying to decipher the universe, for example, we search for gravitational waves or faint waves of light from the Big Bang. And to comprehend the very essence of matter itself, we break it down to the subatomic level and use computer simulations to study particles like quarks and gluons.

Understanding materials with specific functions, such as those used in solar cells, and engineering ways to improve their properties pose many of the same challenges. In the ongoing effort to improve solar cell energy conversion efficiencies, researchers have begun digging deeper--in some cases to the atomic level--to identify material defects that can undermine the conversion process.

For example, heterogeneous nanostructured materials are widely used in a variety of optoelectronic devices, including solar cells. However, due to their heterogeneous nature, these materials contain nanoscale interfaces exhibiting structural defects that can affect the performance of these devices. It is very challenging to identify these defects in experiments, so a team of researchers at the Department of Energy's Argonne National Laboratory and the University of Chicago decided to run a series of atomistic calculations at Lawrence Berkeley National Laboratory's National Energy Research Scientific Computing Center (NERSC) to find the root cause of defects in two commonly used semiconductor materials--lead selenide (PbSe) and cadmium selenide (CdSe)--and provide design rules to avoid them.

"We are interested in understanding quantum dots and nanostructures and how they perform for solar cells," said Giulia Galli, Liew Family professor of Molecular Engineering at the University of Chicago and co-author of a paper published in Nano Letters that outlines this work and its findings. "We are doing modeling, using both classical molecular dynamics and first principle methods, to understand the structure and optical properties of these nanoparticles and quantum dots."

Core-shell Nanoparticles

For this study, the team focused on heterostructured nanoparticles--in this case a colloidal quantum dot in which PbSe nanoparticles are embedded in CdSe. This type of quantum dot--also known as a core-shell nanoparticle--is like an egg, Márton Vörös, Aneesur Rahman Fellow at Argonne and co-author on the paper, explained, with a "yolk" made of one material surrounded by a "shell" made of the other material.

"Experiments have suggested that these heterostructured nanoparticles are very favorable for solar energy conversion and thin-film transistors," Vörös said.

For example, while colloidal quantum dot energy conversion efficiencies currently hover around 12% in the lab, "we aim at predicting quantum dot structural models to go beyond 12%," said Federico Giberti, postdoctoral research scholar at the University of Chicago's Institute for Molecular Engineering and first author on the Nano Letters paper. "If 20% efficiency could be reached, we would then have a material that becomes interesting for commercialization. "

To make this happen, however, Vörös and Giberti realized they needed to better understand the structure of nanoscale interfaces and whether atomistic defects were present. So, along with Galli, they developed a computational strategy to investigate, at the atomic level, the effect of the structure of the interfaces on the materials' optoelectronic properties. By using classical molecular dynamics and first principles methods that do not rely on any fitted parameters, their framework allowed them to build computational models of these embedded quantum dots.

Using this model as the basis for a series of simulations run at NERSC, the research team was able to characterize PbSe/CdSe quantum dots and found that atoms that are displaced at the interface and their corresponding electronic states--what they call "trap states"--can jeopardize solar cell performance, Giberti explained. They were then able to use the model to predict a new material that does not have these trap states and should perform better in solar cells.

"Using our computational framework, we also found a way to tune the optical properties of the material by applying pressure," Giberti added.

This research--which included studies of electron and atomic structures--used four million supercomputing hours at NERSC, according to Vörös. Most of the atomic structure calculations were run on Cori, NERSC's 30-petaflop system installed in 2016, although they also used the Edison system, a Cray XC30 with Intel Xeon processors. While the calculations didn't need a large number of processors, Giberti noted, "I needed to launch many simultaneous simulations at the same time, and analyzing all the data was in itself a rather challenging task."

Looking ahead, the research team plans to use this new computational framework to investigate other materials and structures.

"We believe that our atomistic models, when coupled with experiments, will bring a predictive tool for heterogeneous nanostructured materials that can be used for a variety of semiconducting systems," Federico said. "We are very excited about the possible impact of our work."
This work was funded by the DOE Office of Science through MICCoM (the Midwest Integrated Center for Computational Materials) as part of the Computational Materials Sciences Program and the Center for Advanced Solar Photophysics Energy Frontier Research Center. NERSC is a DOE Office of Science User Facility.

DOE/Lawrence Berkeley National Laboratory

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at