Researcher creates 3D printed multimaterial with programmed stiffness

June 08, 2018

A new method of microscale 3D printing features in-situ resin mixing, delivery and exchange, and a robotic material cleansing system to allow switching between materials of different modulus, or flexibility, without cross contamination between properties.

The method, called multimaterial programmable additive manufacturing with integrated resin delivery, is featured in the journal Scientific Reports. The technology could be useful in various applications, including aircraft wing structures, protective coatings, energy absorption, actuation, flexible armor, artificial muscles, and microrobotics.

Xiaoyu "Rayne" Zheng, an assistant professor of mechanical engineering in the College of Engineering and a member of the Macromolecules Innovation Institute, said the microscale manufacturing system can be up-scaled to the centimeter levels and above.

"We use this new technique to create materials with programmed stiffness," said Zheng. "Basically, you can program where the modulus is distributed in 3D. With this programming we can achieve morphing capability - to stretch and deform in different directions."

With normal material, stretching in one direction will cause the material to shrink in the opposite direction. The new patented process and design allows designers to create very specific modulus distributions within a build to allow for programmed morphing - where programmed expansion or shrinkage can occur throughout the material body.

"The technique is a robotic-based additive manufacturing, an integrated fluidic system that allows us to deliver different ink [resin] as feedstock," Zheng said. "The process is also self-cleaning so that there is no cross-contamination between inks."

Ideally, Zheng said, 3D printing technology would like to be at a place where a functional device could be printed incorporating multiple materials without excessive construction, such as tooling, gluing, fitting, or welding.

"Achieving this goal requires us to put an array of different material properties into a single platform and connect them. The added degree of material design freedom allows us to achieve negative, positive-to-zero morphing strains without changing the 3D micro-architecture of a material," Zheng explained.

Existing 3D printing techniques have limited capabilities in incorporating multiple materials, with the challenge of creating truly three-dimensional, complex architectures with microscale resolutions. Unlike traditional 3D printed materials of a similar base material, multimaterial metamaterials can have varying rigidity distributed throughout - from a soft elastomeric to a rigid brittle within the 3D lattice framework.

"We envision these programmable morphing material concepts will find applications in directional strain amplifications, actuations, flexible electronics, and the design of lightweight metamaterials with tailored stiffness and toughness," Zheng said. "The new material design space offered by rapid fabrication of dissimilar material constituents distributed within a micro-lattice architecture opens up new dimensions of 3D printing of multimaterials with a large degree of stiffness variance."
-end-


Virginia Tech

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.