Nav: Home

Bone apetit: How bacteria eat bone to sustain invasive infection

June 08, 2018

June 8, 2018 - Atlanta, GA - Researchers from Vanderbilt University Medical Center have determined the metabolic pathway that Staphylococcus aureus use to survive in bones. Invasive S. aureus infections frequently occur in the bone and are notoriously resistant to antimicrobial therapy. The research is presented at ASM Microbe, the annual meeting of the American Society for Microbiology, held from June 7th to June 11th in Atlanta, Georgia.

"We found that S. aureus needs to synthesize certain amino acids itself, rather than relying on the host nutrients," said Jim Cassat, M.D., Ph.D., Associate Director, Vanderbilt Institute for Infection, Immunology, and Inflammation, the lead study author. The researchers focused on how S. aureus procures essential cellular building blocks from the host. All forms of life need up to 13 essential metabolites that are used to fuel cellular proliferation and form macromolecules like protein, nucleic acids, and lipids.

"Because these particular amino acid biosynthesis pathways are found only in microbes and plants, they might be particularly attractive targets for the development of new antimicrobial compounds," said Dr. Cassat. Collectively, this work sheds light on how bacterial pathogens obtain crucial nutrients from the host during invasive infection.

Staphylococcus aureus is one of the most important human bacterial pathogens, in part due to the ability to infect nearly every organ and cause significant tissue destruction. This tissue destruction makes invasive staphylococcal infections particularly difficult to treat, as antibiotic penetration into the infection site is limited.

One of the most frequently affected sites during invasive S. aureus infection is bone, which is paradoxical when considering the tissue properties of the skeleton. Specifically, bone has low oxygen concentrations and is constantly being destroyed and reformed by osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells). Bone infection (osteomyelitis) is notoriously recalcitrant to antimicrobial therapy and causes substantial morbidity.

"For this reason, many patients with bone infection require surgeries to remove infected or damaged bone," said Dr. Cassat, "Our lab studies osteomyelitis with the goal of defining how bacterial pathogens survive in such a dynamic environment, how bone cells sense and respond to bacterial pathogens, and how immune responses crosstalk with bone turnover."

To test how S. aureus obtains these critical nutrients during osteomyelitis, the researchers used a large panel of bacterial mutants that are deficient in various metabolic pathways. They tested these mutants in a murine osteomyelitis model to determine which pathways contribute to survival in bone. To supplement these studies, the team developed an ex vivo assay in which Staph is forced to use bone as a sole nutrient source. These approaches revealed specific metabolic pathways that are absolutely necessary for bacterial survival in bone.

In previous studies, Dr. Cassat and the researchers used a special technique called "transposon sequencing" or "TnSeq" to identify S. aureus genes that contribute to osteomyelitis. However, these experiments involve a large number of bacterial mutants that may compete with one another, or perhaps even share nutrients during infection. Therefore, it can be difficult to understand exactly which metabolic pathways are important for bone infection using only TnSeq.
Work in the Cassat Lab is funded by the National Institute of Allergy and Infectious Diseases (Grants R01AI132560 and K08AI113107 to Jim Cassat and F31AI133970 to Aimee Wilde) as well as the Burroughs Wellcome Fund. The current project was led by Dr. Cassat and Aimee Wilde, a 4th year graduate student.

ASM Microbe, the annual meeting of the American Society for Microbiology showcases the best microbial sciences in the world and provides a one-of-a-kind forum to explore the complete spectrum of microbiology. ASM Microbe is held in Atlanta, GA from June 7-11, 2018.

The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Microbiology Articles:

79 Fellows elected to the American Academy of Microbiology
In January of 2015, the American Academy of Microbiology elected 79 new Fellows.
New discovery in the microbiology of serious human disease
Previously undiscovered secrets of how human cells interact with a bacterium which causes a serious human disease have been revealed in new research by microbiologists at The University of Nottingham.
4 cells turn seabed microbiology upside down
With DNA from just four cells, researchers reveal how some of the world's most abundant organisms play a key role in carbon cycling in the seabed.
87 scientists elected to the American Academy of Microbiology
Eighty-seven microbiologists have been elected to Fellowship in the American Academy of Microbiology.
Tips from the journals of the American Society for Microbiology
This release includes information about these articles: Specific Bacterial Species May Initiate, Maintain Crohn's; Bacteria Involved in Sewer Pipe Corrosion Identified; Antibodies to Immune Cells Protect Eyes In Pseudomonas Infection; Dangerous Form of MRSA, Endemic In Many US Hospitals, Increasing in UK.
Tips from the journals of the American Society for Microbiology
Upcoming articles from the journals of the American Society for Microbiology include:
Microbiology brought to life in Nottingham
Antimicrobial insect brains, mouth bacteria behaving badly and the hundreds of microbial communities that lurk in household dust are just some of the highlights at the Society for General Microbiology's autumn meeting in Nottingham next week.
Tips from the journals of the American Society for Microbiology
The following are tips from the journals of the American Society for Microbiology:
Tips from the journals of the American Society for Microbiology
The following are tips from the Journals of the American Society for Microbiology:
New text focuses on microbiology of historic artifacts
Historic and culturally important artifacts, like all materials, are vulnerable to microbial attack.
More Microbiology News and Microbiology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at