Potential biomarker identified to screen quality of donor's stem cells before harvesting

June 08, 2020

Durham, NC - A new study released today in STEM CELLS addresses a significant problem that has been confronting human mesenchymal stem cells (hMSCs) therapy. While hundreds of clinical trials involving thousands of patients are under way to test hMSCs' ability to treat everything from heart disease to brain injury, there has been no way to determine prior to the donor undergoing a painful and expensive surgical harvesting of bone marrow whether or not it would be worth the effort. However, this new study, conducted by scientists at the Agency for Science, Technology and Research (A*STAR), Singapore, identifies a potential biomarker for prescreening donors for their MSCs' growth capacity and potency.

"With the global stem cell market predicted to reach over US$270 billion by 2025 (according to a report published by Transparency Market Research), there is a pressing need for effective biomarkers to be used in the screening of stem cells from prospective donors. This need is boosted by the rapid growth of regenerative medicine, with its pallet of cells, genes and engineered tissues," said Dr. Simon Cool, of A*STAR's Institute of Medical Biology and co-corresponding author of the study. That is what sparked this new investigation.

In an earlier study, this same laboratory had classified hMSCs from age and sex-matched human donors into high- and low-growth capacity groups and established criteria for identifying stem cells with enhanced potency. "These hMSCs showed increased proliferative potential that correlated with enhanced clonogenicity, a higher proportion of smaller-sized cells with longer telomeres, elevated expression of certain cell surface markers, and most importantly, improved ability to mediate ectopic bone formation," said the study's co-corresponding author, Lawrence Stanton, Ph.D., who at the time of the study was a member of A*STAR's Genome Institute of Singapore (and is now with Qatar Biomedical Research Institute).

The team's latest investigation sought to build upon that information by performing molecular analyses of these cells to better understand what accounted for their improved utility. Microarray analysis revealed that hMSCs with a genomic deletion of glutathione S-transferase theta (GSTT1) -- part of a superfamily of genes that bring together glutathione and toxins to safely remove them from the body -- show high-growth capacity. The GSTT1-null hMSCs also exhibit an enhanced ability to clone themselves and grow into full colonies, and they have longer telomeres. Both of these factors are important determinants of MSC potency.

"We believe our study highlights the utility of GSTT1 as a potential biomarker for MSC scalability and may prove useful in selecting potential donors for the creation of high quality hMSC cell banks to improve stem cell therapies," Dr. Cool said.

"The ability to pre-screen donors for a marker that corresponds to better growth of MSCs in vitro is truly important", said Dr. Jan Nolta, Editor-in-Chief of STEM CELLS. "Many teams have sought screening tools like this, which could prevent lot failure for clinical batches of MSCs that don't expand robustly. Until now, there has been no way to evaluate that prior to marrow harvest."
-end-
The full article, "A Genomic Biomarker that Identifies Human Bone Marrow-Derived Mesenchymal Stem Cells with High Scalability," can be accessed at https://stemcellsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/stem.3203.

About the Journal: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. The journal covers all aspects of stem cells: embryonic stem cells/induced pluripotent stem cells; tissue-specific stem cells; cancer stem cells; the stem cell niche; stem cell epigenetics, genomics and proteomics; and translational and clinical research. STEM CELLS is co-published by AlphaMed Press and Wiley.

About AlphaMed Press: Established in 1983, AlphaMed Press with offices in Durham, NC, San Francisco, CA, and Belfast, Northern Ireland, publishes three internationally renowned peer-reviewed journals with globally recognized editorial boards dedicated to advancing knowledge and education in their focused disciplines. STEM CELLS® is the world's first journal devoted to this fast paced field of research. THE ONCOLOGIST® is devoted to community and hospital-based oncologists and physicians entrusted with cancer patient care. STEM CELLS TRANSLATIONAL MEDICINE® is dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

About Wiley: Wiley, a global company, helps people and organizations develop the skills and knowledge they need to succeed. Our online scientific, technical, medical and scholarly journals, combined with our digital learning, assessment and certification solutions, help universities, learned societies, businesses, governments and individuals increase the academic and professional impact of their work. For more than 200 years, we have delivered consistent performance to our stakeholders. The company's website can be accessed at http://www.wiley.com.

AlphaMed Press

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.