Functional polymers to improve thermal stability of bioplastics

June 08, 2020

One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

In this paper, the team concentrated on researching oligomer and polymer materials with macrocyclic compounds characterized by enhanced thermostability. "Such products have lower vitrification temperatures, which makes them more malleable in comparison with commercial polylactic acid," says co-author, Research Associate Pavel Padnya.

Polycondensation products of lactic acid (poly- and oligolactides) are of great interest for targeted drug delivery and implant design. A width of the range of their applications is due to a number of practically important properties, such as biocompatibility and biodegradability, non-toxicity and mechanical strength.

"Modification of the obtained polymers with various additives can improve their properties and expand possible applications. One of the strategies to increase the stability of materials in biological media and to make drug loading possible is to obtain branched, or, as they are called, star-shaped polymers," explains Padnya.

"We've been working on this topic for five years thanks to Russian Science Foundation's funding. We have had some non-trivial results for biodegradable polymers," adds team leader, Professor Ivan Stoikov.

In the course of the study, new functional star-shaped polymers of lactic acid were obtained. Researchers chose macrocyclic compounds, thiacalixarenes, as the "crosslinking units" of polymer chains. An important result of this work is that the dependence of the structure of the obtained oligo- and polymer products on the synthesis temperature and the nature of the solvents used, as well as on the spatial structures selected for the "crosslinking" of chains of macrocyclic compounds, was established.

This development can have a significant impact on the use of polymers in medicine: it turned out that the obtained compounds have an affinity for a certain type of xanthene dyes - a means for medical diagnostics and the study of biochemical processes in cells.
-end-


Kazan Federal University

Related Polymers Articles from Brightsurf:

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Mixing the unmixable -- a novel approach for efficiently fusing different polymers
Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.