Doing more with terahertz: Simplifying near-infrared spectroscopy systems

June 08, 2020

Spectroscopy has roots in early 19th century curiosity about interactions between matter and electromagnetic radiation. Thanks to advances in electronics and materials science, various spectroscopy techniques are now routinely used to study the composition of materials and the nature of their chemical bonds by analyzing how they absorb or reflect electromagnetic waves.

Different materials have different absorption profiles across a wide range of frequencies. Some important features in certain molecular systems, like the hydrogen bonds in aqueous systems or the self-assembly of proteins, can be appreciated in their absorption profiles only at frequencies in the order of terahertz (THz, 1000 billion Hertz), a near-infrared range. Scientists have been actively developing spectroscopy techniques compatible with such high frequencies, and a promising one is called THz dual-comb spectroscopy.

Although this method offers many advantages over others in the terahertz range, its use has been limited because of the high complexity of the measurement system, which typically requires two independent stable lasers as the radiation sources. Now, researchers from Tokushima University, Japan, Beihang University, China, and Université du Littoral Côte d'Opale, France,
To understand the main aspects of their method, it helps to understand the basics of THz dual-comb spectroscopy. The term "dual-comb" refers to the fact that the laser pulses, when plotted versus frequency, look like a series of equally spaced spikes (spectral lines) over a broad frequency range in the terahertz region, and hence a "comb." In dual-comb spectroscopy, two lasers with slightly different "combs" are used to measure the absorption profile of a sample. Because of the nature of the system, the signal that is actually measured, which results from the "mixing" of the two combs, occupies a much lower frequency range but still reflects all the high-frequency information of interest. The use of two lasers, however, can result in a problem with stabilization control.

To address the problem of stabilization, the researchers used a single laser to produce the two combs. However, when both combs are produced by the same laser source, a "jitter" or timing instability blurs the high-frequency information reflected in the final low-frequency signal that is measured. They corrected this undesirable phenomenon by using a technique called adaptive sampling, by which the signal to be digitally acquired is not sampled at equal time periods but at specific times calculated to minimize any drifts or errors in the relative timing between combs.

To demonstrate their method, the researchers carried out measurements on a mixture of air and the compound acetonitrile. This special gas exhibits characteristic features when irradiated with terahertz radiation and, most importantly, these features vary slightly with pressure. Because these variations are very small, previous dual-comb spectroscopy approaches using a single laser were unable to detect them due to their limited resolution. In contrast, the researchers could use the scheme proposed in this study to accurately observe many of these features. They report a remarkably narrow absorption linewidth (25 MHz) - the first achieved with a dual-comb fiber laser.

The researchers are already working on yet another complementary technique that could push the resolution of THz dual-comb spectroscopy with a single laser even further. The reduction in system complexity resulting from their use of the adaptive sampling technique could broaden the areas of application of precise THz spectroscopy, providing scientists with a powerful yet simple tool to further explore the material world.

SPIE--International Society for Optics and Photonics

Related Spectroscopy Articles from Brightsurf:

Perspectives of infrared spectroscopy in quantitative estimation of proteins
The present review describes the basic principle and the instrumentation of IR spectroscopy along with its advancements.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Researchers demonstrate record speed with advanced spectroscopy technique
Researchers have developed an advanced spectrometer that can acquire data with exceptionally high speed.

Spectroscopy approach poised to improve treatment for serious heart arrhythmia
Researchers have demonstrated that a new mapping approach based on near infrared spectroscopy can distinguish between fat and muscle tissue in the heart.

Late blight research pairs spectroscopy with classic plant pathology diagnostics
Gold and colleagues at the University of Wisconsin-Madison recently published research showing how they used contact spectroscopy to non-destructively sense how plant pathogens differentially damage, impair, and alter plant traits during the course of infection.

Doing more with terahertz: Simplifying near-infrared spectroscopy systems
Researchers from Beihang University, China, and Tokushima University, Japan, have developed a terahertz spectroscopy scheme that offers outstanding resolution using a single laser.

A new horizon for vibrational circular dichroism spectroscopy
(1) The development of solid state and time-step VCD methods opened a new horizon to reveal the mechanism of chirality amplification from microscopic to supramolecular scales.

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.

Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Read More: Spectroscopy News and Spectroscopy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to