Nav: Home

Patterns in permafrost soils could help climate change models

June 08, 2020

The Arctic covers about 20% of the planet. But almost everything hydrologists know about the carbon-rich soils blanketing its permafrost comes from very few measurements taken just feet from Alaska's Dalton Highway.

The small sample size is a problem, particularly for scientists studying the role of Arctic hydrology on climate change. Permafrost soils hold vast amounts of carbon, which could turn into greenhouse gasses. But the lack of data makes it difficult to predict what will happen to water and carbon as the permafrost melts due to warming temperatures.

New research led by scientists at The University of Texas at Austin may help solve that problem.

The scientists spent the past four summers measuring permafrost soils across a 5,000 square-mile swath of Alaska's North Slope, an area about the size of Connecticut. While working to buildup a much-needed soil dataset, their measurements revealed an important pattern: The hydrologic properties of different permafrost soil types are very consistent, and can be predicted based on the surrounding landscape.

"There is a vast swath of land that is eminently predictable," said Michael O'Connor, who led the research while earning his doctoral degree from the UT Jackson School of Geosciences. "Our paper shows that over an enormous study area, these very simple patterns in these properties hold true."

The study was published in the journal Geophysical Research Letters. Co-authors include researchers from the Jackson School, UT's Cockrell School of Engineering, Utah State University and the University of Michigan.

The researchers examined nearly 300 soil samples from different types of terrain. They found that soil types and their thickness are closely associated with the landscape, with the researchers classifying the landscapes into five categories based on the dominant vegetation and whether the environment was on a hill slope or near the bottom of a river valley.

They also found that each of the three soil types had distinct properties that impacted how easily the soil could transfer heat and water - which determine how carbon dioxide and methane, another powerful greenhouse gas, are released.

The findings will allow scientists to look to the landscape to understand how carbon and greenhouse gasses are moving through the soil below.

While the study does not make predictions about carbon release, co-author Bayani Cardenas, a professor in the Jackson School's Department of Geological Sciences, said that it provides a research framework.

"Our data fills a knowledge gap that has been around for 30 years," Cardenas said. "The community studying permafrost and climate change will appreciate its inherent value."

Permafrost locks away about as much carbon as what is already in the atmosphere. However, until this study, climate modelers lacked direct permafrost soil information, with the research record limited to about a dozen samples taken along the Dalton Highway and engineering reports that studied permafrost for road and pipeline construction.

Improving the data available to climate scientists was the primary motivation behind the permafrost collection campaign, said O'Connor. The North Slope of Alaska is almost pure wilderness. The research team relied on a helicopter to get around and an 18-inch breadknife to slice blocks of soil from the earth.

"We were in some places that probably no human had set foot on." Cardenas said.

Finding a pattern between the landscape and the permafrost soil patterns did not come as a surprise. Plant ecologists working in the region had mentioned it anecdotally. But the newly published data is something the entire research community can draw on.

Cathy Wilson, a hydrologist and climate modeler at Los Alamos National Laboratory who also conducts permafrost research in Alaska, said that the study is a big step for climate models, and that she is looking forward to applying study techniques in her own work.

"This allows us to really start to scale-up this valuable information on soil properties to at least the North Slope, the foothills of mountain ranges, and beyond," she said.
-end-
The research was funded by the National Science Foundation, The University of Texas at Austin Geology Foundation, the Geological Society of America Student Research Grant program, the American Geophysical Union Horton Research Grant, and the NASA Terrestrial Hydrology Program.

University of Texas at Austin

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.