Nav: Home

What do electric vehicle drivers think of the charging network they use?

June 08, 2020

With electric vehicles making their way into the mainstream, building out the nationwide network of charging stations to keep them going will be increasingly important.

A new study from the Georgia Institute of Technology School of Public Policy harnesses machine learning techniques to provide the best insight yet into the attitudes of electric vehicle (EV) drivers about the existing charger network. The findings could help policymakers focus their efforts.

In the paper, published in the June 2020 issue the journal Nature Sustainability, a team led by Assistant Professor Omar Isaac Asensio describes training a machine learning algorithm to analyze unstructured consumer data from 12,270 electric vehicle charging stations across the U.S.

The study demonstrates how machine learning tools can be used to quickly analyze streaming data for policy evaluation in near-real time. Streaming data refers to data that comes in a continuous feed, such as user reviews from an app. The study also revealed surprising findings about how EV drivers feel about charging stations.

For instance, the conventional wisdom that drivers prefer private stations to public ones appears to be wrong. The study also finds potential problems with charging stations in larger cities, presaging challenges yet to come in creating a robust charging system that meets all drivers' needs.

"Based on evidence from consumer data, we argue that it is not enough to just invest money into increasing the quantity of stations, it is also important to invest in the quality of the charging experience," Asensio wrote.

Perceived Lack of Charging Stations a Barrier to Adoption

Electric vehicles are considered a crucial part of the solution to climate change: transportation is now the leading contributor of climate-warming emissions. But one major barrier to broader adoption of electric vehicles is the perception of a lack of charging stations, and the attending "range anxiety" that makes many drivers nervous about buying an EV.

While that infrastructure has grown considerably in recent years, the work hasn't taken into account what consumers actually want, Asensio said.

"In the early years of EV infrastructure development, most policies were geared to using incentives to increase the quantity of charging stations," Asensio said. "We haven't had enough focus on building out reliable infrastructure that can give confidence to users."

This study helps rectify that shortcoming by offering evidence-based, national analysis of actual consumer sentiment, as opposed to indirect travel surveys or simulated data used in many analyses.

Asensio directed the study with a team of five students in public policy, engineering, and computing. Two were from Georgia Tech: Catharina Hollauer, a recent graduate of the H. Milton School of Industrial and Systems Engineering, and Sooji Ha, a dual Ph.D. student in the School of Civil and Environmental Engineering and the School of Computational Science and Engineering.

The other three were participants in the 2018 Georgia Tech Civic Data Science Fellows program, which draws talented students from around the country to the Georgia Tech campus for a summer of research and learning. They are Kevin Alvarez of North Carolina State University, Arielle Dror of Smith College, and Emerson Wenzel of Tufts University.

EV Charging Sore Spots Revealed

Asensio's team used deep learning text classification algorithms to analyze data from a popular EV users smartphone app. It would have taken most of a year using conventional methods. But the team's approach cut the task down to minutes while classifying sentiment with accuracy similar to that of human experts.

The study found that workplace and mixed-use residential stations get low ratings, with frequent complaints about lack of accessibility and signage. Fee-based charging stations tend to get more poor reviews than free charging stations. But it is stations in dense urban centers that really draw complaints, according to the study.

When researchers controlled for location and other characteristics, stations in dense urban areas showed a 12 - 15% increase in negative sentiment compared to nonurban locations.

This could indicate a broad range of service quality issues in the largest EV markets, including things like malfunctioning equipment and an insufficient number of chargers, Asensio said.

The highest rated stations are often located at hotels, restaurants, and convenience stores, a finding that may support incentive-based management practices in which chargers are installed to draw customers. Stations at public parks and recreation facilities, RV parks, and visitor centers also do well, according to the study.

But, contrary to theories predicting that private stations should provide more efficient services, the study found no statistically significant difference in user preferences when it comes to public versus private chargers.

That finding could be an inducement to invest in public charging infrastructure to meet future growth, Asensio said. Such a network was cited in a study by the National Research Council as key to helping overcome barriers to EV adoption.

Improving Policy Evaluation Beyond EV's

Overall, Asensio said the study points to the need to prioritize consumer data when considering how to build out infrastructure, especially when it comes to requirements for charging stations in new buildings.

But EV policy is not the only way the study's deep learning techniques can be used to analyze this kind of material. They could be adapted to a broad range of energy and transportation issues, allowing researchers to deliver rapid analysis with just minutes of computation, compared to time lags measured sometimes in months or years using more traditional methods.

"The follow-on potential for energy policy is to move toward automated forms of infrastructure management powered by machine learning, particularly for critical linkages between energy and transportation systems and smart cities," Asensio said.
-end-
The article, "Real-time Data from Mobile Platforms to Evaluate Sustainable Transportation Infrastructure," was published in Nature Sustainability on June 1. The article is available at https://doi.org/10.1038/s41893-020-0533-6.

The research was supported by National Science Foundation Award No. 1931980, the Civic Data Science REU program at Georgia Tech (NSF Award No. IIS-1659757), the Anthony and Jeanne Pritzker Family Foundation, and the Sustainable LA Grand Challenge.

The School of Public Policy is a unit of the Ivan Allen College of Liberal Arts.

Georgia Institute of Technology

Related Learning Articles:

When learning on your own is not enough
We make decisions based on not only our own learning experience, but also learning from others.
Learning more about particle collisions with machine learning
A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.
Getting kids moving, and learning
Children are set to move more, improve their skills, and come up with their own creative tennis games with the launch of HomeCourtTennis, a new initiative to assist teachers and coaches with keeping kids active while at home.
How expectations influence learning
During learning, the brain is a prediction engine that continually makes theories about our environment and accurately registers whether an assumption is true or not.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.
School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.
Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.
Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.
Sleep readies synapses for learning
Synapses in the hippocampus are larger and stronger after sleep deprivation, according to new research in mice published in JNeurosci.
More Learning News and Learning Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.